中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/54631
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47012033      Online Users : 94
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/54631


    Title: 無線感測網路之定位追蹤演算法設計與實作;Design and Implementation of Localization and Tracking in Wireless Sensor Network
    Authors: 王經憲;Wang,Ching-Hsien
    Contributors: 電機工程研究所
    Keywords: 定位、分配式演算法、次梯度最佳化、訊號特徵演算法;and Fingerprint;subgradient optimization;distributed algorithm;positioning
    Date: 2012-08-28
    Issue Date: 2012-09-11 18:55:48 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文提出了在無線網路裡,利用接收訊號強度量測來計算次梯度最佳化與訊號特徵法的室內定位系統。而我們也採用的目標函式是加權最小平方估計,之所以會採用這個目標函式是因為他擁有好的函式凸型性以及能夠對抗對遮蔽效應。在分散式方法裡,無線感測器利用遞迴的方式使得目標函數近似次梯度法。本論文也提出可調變的步長,我們主要是藉由次梯度值與最小的移動距離來加速收斂速度。在追蹤定位上除了次梯度最佳化也搭配訊號特徵法,不但可以藉此得到更快速的收斂速度,也讓初始位置得到改善。一個是大步走的訊號特徵法,一個是小步走的次梯度法,倆倆互相搭配運用,稱之為高爾夫定位演算法,合併了訊號特徵法與次梯度法的優點,搭配使用。此外,收斂分析也證明了我們所設計的可調整式步長是會收斂的。在模擬方面,我們提出的演算法比傳統的分配式定位演算法都來的精確,不論是固定位置分析或是追蹤分析,並且收斂速度也比較快。最後,在硬體實作方面,我們利用了硬體描述語言ISE來實現高爾夫演算法,並且比較了定點數與浮點數的誤差值,以及觀察實現的電路行為是否有追蹤的動作。In this paper, we propose a subgradient optimization method for localization based on received signal strength in wireless sensor network. The objective function of weighted least-squares estimation is adopted, which shows good convexity and has immunity to shadowing effect. We also approximate the subgradient of the objective function by a recursive form so that it can be implemented in a decentralized manner within each sensing node. A variable step size is proposed to take into consideration both the subgradient and minimum adjustment to accelerate convergence. To improve the accuracy of positioning in a large-scale sensor network, a fingerprint method is incorporated. The localization method allows a large jump in movement. So, our proposed golf localization combines the fingerprint method with subgradient optimization.Furthermore, the convergence analysis is also given to show the feasibility of our design for the step size. From simulation results, we can see the proposed algorithm has better accuracy and convergence rate than the conventional decentralized algorithms to localize a stationary or moving target in wireless sensor network. Finally, we are going to introduce the hardware, and we use ISE simulation to show our proposed golf algorithm, and then compare the error value between the fixed point and floated point. So, we can look out true whether the implement circuit do tracking or not.
    Appears in Collections:[Graduate Institute of Electrical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML643View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明