中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/61552
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47032425      Online Users : 100
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/61552


    Title: 基於Kinect的行為辨識與互動分析;Kinect based Action Recognition and Human Interaction Analysis
    Authors: 黃柏穎;Huang,Bo-Ying
    Contributors: 資訊工程學系
    Keywords: 動作森林;行為識別;隨機森林;深度影像;Kinect;Action Forest;Action Recognition;Random Forests;depth image;Kinect
    Date: 2013-08-02
    Issue Date: 2013-10-08 15:22:03 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 人類的行為辨識是長久以來電腦視覺領域中一個重要的課題,並以此為基礎衍生了許多技術與相關應用。本篇論文的主要目標是設計一個具有泛用性質的人體行為辨識之分類演算法,這個方法可以透過預先收集的動作資料庫,進行含有時間資訊的動作特徵擷取,並將取得的特徵以本論文提出的動作森林 (Action Forests, AF) 模型進行訓練,使其適用於三維空間的骨架特徵。藉由深度攝影機的輔助,本論文能成功在不限制背景與攝影機位置的情境下實時的進行分類與投票,並獲取最終的行為分類結果。

    在實驗的部份,我們藉由Kinect設備收集了幾種常見的單人行為與多人行為的深度影像與骨架資訊,丟入動作森林演算法進行訓練,並組合比較各種參數之效果,以及相對於原始演算法的改良程度。從結論來說,此一訓練模型下成功的適應了三維空間與人體骨架相關的特徵,並且能在即時運行 (30fps) 的條件下有效的分類出不同的人類行為模式。
    Human action recognition is one of the most important issues in computer vision. In this thesis, we plan to design a general approach to recognize human behavior. The approach is implemented based on a pre-collected action database, which is extracted by the depth images to form the sequences of skeletons, trained by the proposed Action Forests (AF) model. The proposed AF model extends the random forest algorithm by using different decision functions to fit the skeletal features in the 3D space. The system achieves real-time classification result without the limitation constrained by background and camera position.

    Experiments were conducted on various examples to verify the validity of the proposed method. Several human behaviors with single-character actions and two-person interactions were collected to train the AF model. The skeletal features were retrieved from the depth sensor Kinect. In the experiments, we investigate the effects of several training parameters in AF. Experimental results demonstrate that the proposed AF model can learn the skeletal features efficiently and run at 30 frames per second on action classification with high accuracy.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML777View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明