中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/75300
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47023536      Online Users : 179
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/75300


    Title: 應用自組織映射網路於複雜紋理紡織品的色彩檢測;An Application of a Self-Organizing Map Network in Color Detection of Complex Textured Textiles
    Authors: 曾柏勳;Tseng, Po-Hsun
    Contributors: 資訊工程學系
    Keywords: 自組織映射神經網路;色彩檢測;紡織品;紋理;Self-Organizing Map;Color Detection;Textiles;Textured
    Date: 2017-11-08
    Issue Date: 2018-01-16 11:03:52 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 紡織品的顏色因為不同凹凸編織方式會造成顏色變異性大,使得色彩檢測難度增加。為了提高紡織品色彩識別的準確度,本研究提出結合自組織映射(SOM)神經網路的色彩檢測方法。針對一個具有複雜紋理的彩色紡織品,我們將影像透過色彩空間轉換將RGB色彩空間轉換為CIE Lab色彩空間,以SOM神經網路進行色彩分群,計算該影像的色彩分佈直方圖,再根據直方圖取出紡織物主色,最後使用CIE 2000比對色彩偏差的測量,據此進行色彩識別。實驗分別採用ECCV 2016紡織品資料庫樣本以及真實拍攝10種不同顏色的紡織品,我們在每塊紡織品上隨機取得20個區塊影像,共200個樣本來驗證我們的色彩識別方法。結果顯示,在ECCV 2016紡織品資料庫,使用我們的色彩檢測方法可以將原本EER=8%的辨識錯誤率降低至EER=3.5%;在真實環境所拍攝的紡織品辨識實驗,我們的色彩檢測方法在SOM分群數為16類的情況下,可以將EER=13%的辨識錯誤率降低至EER=1.0%。;Different uneven weaving methods would cause a large color variability of textiles, increasing the degree of difficulty in detecting colors. To increase the accuracy in color recognition of textiles, we proposed a method combining a self-organizing map (SOM) neural network for color detection in this study. In this method, RGB images were converted into CIE Lab counterparts through color space for colored textiles with complex textures, where the SOM neural network was used to perform color clustering, and to calculate the image color histogram (distribution). Further, main colors of the textiles were extracted from the histogram, and finally the CIE 2000 formula was used to compare the deviation of color measurements, based on which the color recognition was performed. Experimentally, samples of the textile database of ECCV 2016 and filmed textile images with ten colors were employed, where twenty blocks of images were randomly sampled from each textile, for a total of 200 samples used to verify the color recognition method. The results indicated that, for the samples of the textile database of ECCV 2016, using the color detection method proposed in this study could reduce the recognition error rate from 8% (EER=8%) to 3.5% (EER=3.5%), while, for the filmed textile images, using our SOM color detection method could reduce the recognition error rate from 13% (EER=13%) to 1.0% (EER=1.0%) for a number of clusters of 16.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML290View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明