中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/81083
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47013080      Online Users : 147
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81083


    Title: 地點資料庫中錯誤場景影像自動偵測系統;Automatic Incorrect Scene Detection System for Large Scale Location Database
    Authors: 柳翔元;Liu, Hsiang-Yuan
    Contributors: 資訊工程學系
    Keywords: 深度學習;卷積神經網路;場景識別;Deep Learning;CNN;Scene Recognition
    Date: 2019-07-16
    Issue Date: 2019-09-03 15:33:37 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近年來由於深度學習網路的蓬勃發展,被廣泛應用於電腦視覺與圖形別的領域中,也因為人工智慧的發展,透過建置智慧化的系統,能夠有效幫助人類處理簡單且重複性高的問題.本篇論文實作一個自動化錯誤場景偵測系統,能夠有效取代以往以人工方式檢測地標圖像資料庫之正確性的過程,以節省人力成本.
    在自動化錯誤場景偵測的系統中,我們提出了錯誤場景偵測演算法,以解決偵測錯誤場景的問題,並且基於此系統架構,我們提出了多級別特徵擷取器(Multiple Level Extractor),透過擷取場景圖中不同級別的特徵,改善了Resnet50網路架構的特徵提取效果,以及多尺度距離度量(Multiple Scale Distance Measurement),在給定的特徵擷取器之下,總和了在多種不同尺度下之特徵距離,能夠將系統之效能再提升.
    最後,基於本系統的架構下,我們實驗了系統在不同的特徵擷取器與距離度量方式之下,影響系統效能之變化程度.;In recent years, due to the vigorous development of deep learning networks, deep learning has been widely used in the field of computer vision and graphic recognition. Because of the development of artificial intelligence, through the establishment of intelligent systems, it can effectively help humans to handle simple and repetitive problem.
    We propose an automated incorrect scene detection system. which can effectively replace the process of manually detecting the correctness of the landmark image database to save human resources costs.
    In the system of automatic incorrect scene detection, we propose an incorrect scene detection algorithm to solve the problem of detecting incorrect scenes, and based on this system architecture, we propose a MLE (Multiple Level Extractor). By extracting different levels of features in the scene image, improved the feature extraction effect of the Resnet50 network architecture. In addition, we also propose MSD(Multiple Scale Distance) measurement, which sums the feature distances at various scales under a given feature extractor. MSD also improved the performance of the system. Finally, based on the architecture of the system, we experimented with the system under different feature extractor and distance measurement methods , which affect the degree of system performance change.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML128View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明