隨著科學技術的發展和進步,學習模式也在不斷發展。在問題驅動的學習中,學生通過回答問題來澄清和驗證他們學到的知識。如此眾多的問題需要良好的管理。良好的管理可以避免由於模糊表達而將具有相同知識集的學習材料定義到不同部分的情況。在篇論文中,我們提出了一個專注於國中小數學題目的階層式分類系統。我們測試了不同文件表示和分類器的幾種組合,其中包括扁平多標籤分類和知識點的階層式多標籤分類。針對包含文本和圖像的當前問題,我們還提出了文字與影像的預處理方法和組合文字影像特徵的CNN分類模型。實驗表明,我們的階層式分類可以勝過扁平多標籤分類方法。;With the development and progress of science and technology, the learning patterns also evolve. In Question-Driven learning, students clarify and validate what they learn by answering questions. Such a large number of questions needs good management. A well-performed management can avoid the situation that learning materials with the same knowledge set are defined into different sections due to ambiguous expressions. In this work, a hierarchical classification system that focuses on K-12 learning materials is proposed. We test several combination of document representation with flatten label and hierarchical label of the knowledge points. In response to a current question that contains text and image, we also introduce a multi-modal preprocessing approach and a combined feature CNN model. The experiment shows that our hierarchical classification can outperform flatten multi-label classification methods.