中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/81964
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47018382      Online Users : 224
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81964


    Title: 人造環境之數位分身加值應用:以深度學習/BIM/智慧電表/IoT示範能源管理;Digital Avatar Value-Added Application for Built Environments: Applying Deep Learning / Bim / Smart Meters / Iot for Energy Management
    Authors: 周建成
    Contributors: 國立中央大學土木工程學系
    Keywords: 數位分身;建築資訊模型;深度學習;智慧電表;物聯網;能源管理;digital twin;digital avatar;building information modeling;IoT;deep learning;smart meter;energy management
    Date: 2020-01-13
    Issue Date: 2020-01-13 14:00:36 (UTC+8)
    Publisher: 科技部
    Abstract: 從用電安全、英國智慧電表開放資料、數位分身的角度開始,本研究探討台灣智慧電表的加值應用。過去已和能源局與工研院合作取得少量台灣資料來分析用電行為,本研究改良深度學習LSTM方法,使其先預測用電不安全的三種情形:瞬間用電超標、持續性用電超標,與經常性用電超標,建立預警系統,接著,結合IoT裝置收集環境面資料,搭配智慧電表來進行用電量預測。最後,在測試的場域建構虛擬世界,以數位分身的作法示範節電規則,讓居民可在個人隱私保障的情況下,預測未來是否用電安全,與可進行的節電行為為何。 ;Starting from the perspective of electricity safety, UK smart meter open data, and digital avatar, this study explores the value-added application of Taiwan's smart meters. In the past, we have cooperated with the Energy Bureau and ITRI to obtain a small amount of Taiwan smart meter data to analyze the behavior of electricity. This study improves the deep learning LSTM method, so that it can predict the three situations of unsafe electricity: instantaneous power consumption exceeds the standard, and continuous and frequent power consumption exceeds the standard. Additionally, we will establish an early warning system for unsafe electricity usage, and then combine IoT devices to collect environmental data, and use smart meters to predict electricity consumption. Finally, we will construct a virtual world in the field of testing, and demonstrate the power-saving rules in a digitally-divided way, so that residents can predict whether electricity is safe in the future and the power-saving behavior that can be performed in the case of personal privacy protection.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Department of Civil Engineering] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML238View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明