English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 47020582      線上人數 : 86
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/82129


    題名: 以S-O-R框架設計跨領域業配文偵測方法之研究;Devising a Cross Domain Algorithm to Detect Deceptive Review Comments with S-O-R Framework
    作者: 許秉瑜
    貢獻者: 國立中央大學企業管理學系
    關鍵詞: 刺激 - 生物 - 反应(S-O-R)框架;業配文偵測;Deceptive reviews detection;Stimuli-Organism-Response (S-O-R) framework
    日期: 2020-01-13
    上傳時間: 2020-01-13 14:16:47 (UTC+8)
    出版者: 科技部
    摘要: 隨著電子商務的興起,網路上的產品評論也隨之成長。但是為了獲取經濟利益,廠商提供的虛假消費者評論也隨之起。為了能解決這個重要問題,有幾個研究已經嘗試設計分類器將評論分為真實與虛假。這些研究大部分使用傳統的文字挖礦甚或深度學習方法。這些方法的共同特點就是建立模型使用的字詞與訓練集的文本高度相關。但在實務上,不同領域的評論會使用差異很大的字詞來評論產品,直接導這些分類器跨領域應用時accuracy 可以低到只有55%. 就算是深度學習的方法也沒改善多少。本研究將以Stimulus-Organism-Response (S-O-R) framework 為基礎。由這理論的觀念推導出相關的字詞品類。並經由LIWC, Wordnet 以及網站取的相關字詞。根據這些字詞,一個跨領域分類器將會被設計出來。這個分類器將會被應用在三個常用領域的評論來檢驗其精準度以及跨領域的應用性。 ;E-commerce has been developed at the high pace in recent years. Accordingly, the rise of potential spamming reviews from the online services is growing quickly and attract significant concern from many organizations. Therefore, deceptive detection is one of critical issues in online businesses. Existing studies investigated deceptive detection mainly base on the technology of traditional text mining. As a result, the detection is closely related to the training corpus collected. However, reviews for different application domains utilize very different words. As the result, the precision and accuracy of these approaches were less than ideal when being applying to different domains. In this study, a cross domain detector is designed by utilizing the Stimulus–Organism–Response (S-O-R) framework to infer word categories. The proposed approach will be intensively evaluated with the three benchmark datasets comprised by previous research to compare the performance with the state of the art approaches.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[企業管理學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML306檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明