中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/86597
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 47022712      線上人數 : 168
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86597


    題名: 基於嘴唇影像序列之生物認證;Lip-image-sequence-based Biometric Authentication
    作者: 郭政言;Guo, Zheng-Yan
    貢獻者: 資訊工程學系
    關鍵詞: 嘴唇;影像;序列;生物認證;Lip;Image;Sequence;Biometric Authentication
    日期: 2021-08-02
    上傳時間: 2021-12-07 13:00:50 (UTC+8)
    出版者: 國立中央大學
    摘要: 生物認證系統在近年來已被廣泛的用在生活中,而如何提升安全性一直是重要的課題。以往基於靜態生物特徵的認證方法在各種偽造方法推陳出新之下已越來越容易被破解。而基於生物特徵序列的方法由於需以序列資料進行驗證,因此相對難以偽造,進而提升了安全性。
    本文以神經網路實現了基於嘴唇影像及關鍵點序列的身分認證模型,並以本文提出的資料集進行訓練及測試。在一般認證實驗中,本文訓練的模型得到了 8.86% HTER的結果,證明了此模型對嘴唇影像及關鍵點序列資料的有效性。而為了測試輸入序列資料是否能達到提升安全性的目的,本文以靜態序列作為偽造資料輸入模型,得到了84.09% FAR 的結果,顯示了直接輸入序列資料對於提升安全性是沒有幫助的。為了抵
    抗靜態序列攻擊,本文計算影像序列的影格差值作為輸入,最後在一般認證實驗中得到了 6.53% HTER 的結果,在靜態序列攻擊實驗中得到了 9.09% FAR 的結果,證明了嘴唇影像序列的影格差值在認證問題中的有效性及安全性。;In recent years, biometric authentication systems have been widely used in daily life, and how to improve security has always been an important topic. In the past, authentication methods based on static biometrics have become more and more easily cracked under various forgery
    methods. However, methods based on sequential biometric need to be verified with sequential data, so it is relatively difficult to forge, thereby improving the security.
    In this paper, an identity authentication model based on lip image and key point sequence is implemented by neural network, and the data set proposed in this paper is used for training and testing. In the general authentication experiment, the model trained in this paper obtained a
    result of 8.86% HTER, which proved the effectiveness of this model for lip image and key point sequence data. In order to test whether the sequence data can achieve the purpose of improving security, we input static sequences as the fake data to the model, and obtains a result of 84.09% FAR, which shows that directly inputting sequence data is not helpful for improving security. In order to resist the static sequence attack, we calculate the frame difference of the image sequence as input. Finally, the result of 6.53% HTER is obtained in the general authentication experiment, and the result of 9.09% FAR is obtained in the static sequence attack experiment, which proves the validity and safety of the frame difference of the lip image sequence in the authentication problem.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML85檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明