English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 47022775      線上人數 : 127
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86624


    題名: 混合深度神經網路的市場魚種辨識;Hybrid Deep Neural Network Classifier for Market Fish Species Recognition
    作者: 林岱鋒;Lin, Tai-Feng
    貢獻者: 資訊工程學系
    關鍵詞: 深度學習;物件偵測;影像辨識
    日期: 2021-08-04
    上傳時間: 2021-12-07 13:02:12 (UTC+8)
    出版者: 國立中央大學
    摘要: 在臺灣傳統魚市場中有成千上萬的魚類品種,普通消費者很難準確辨別魚的種類,但目前的魚類辨識系統大多是針對非食用魚類較多,且魚類種類數量非常稀少,因此本研究針對臺灣魚市場常見之魚類,設計一個多類別數的魚類辨識系統,以提供大眾消費者藉以在魚市場識別、採購魚類產品。首先透過物件偵測找出影像中的魚體,並設計一個混合神經網路分類器,起初透過ResNet50進行分類並輸出Top-5的相似類別,接著進行第二階段模板匹配,利用孿生神經網路模型將已切割的影像與所有相似類別的模板圖像進行比對,輸出影像間的相似值,最後比較各類的相似值,輸出最大相似值類別作為最終決策。實驗結果顯示混合神經網路分類器能達到97.5%的辨識率,優於ResNet50的90.5%和孿生神經網路的89%。
    ;In Taiwan’s traditional fish market, there are thousands of fish species. It is difficult for ordinary consumers to accurately identify the types of fish. However, most of the current fish identification systems are aimed at more non-edible fish, and the number of fish species is very scarce. The study designed a multi-category fish identification system for common fish in Taiwan’s fish market to provide consumers with a way to identify and purchase fish products in the fish market. First, find the fish in the image through object detection, and design a hybrid neural network classifier. At first, it classifies through ResNet50 and outputs similar categories of Top-5, and then performs the second stage of template matching, using the Siamese neural network model compares the cut image with the template images of all similar categories,
    outputs the similarity values between the images, and finally compares the similarity values of various types, and outputs the largest similarity value category as the final decision. The experimental results show that the hybrid neural network classifier can achieve a recognition
    rate of 97.5%, which is better than the 90.5% of ResNet50 and 89% of the Siamese neural network.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML63檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明