English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 47022775      線上人數 : 127
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86639


    題名: 空氣品質感測器之故障偵測--基於深度時空圖模型的異常偵測框架;Detecting Malfunctioned Air Quality Sensors -- an Anomaly Detecting Framework Base on Deep Spatial-Temporal Graph Model
    作者: 林子恆;Lin, Tzu-Heng
    貢獻者: 資訊工程學系
    關鍵詞: 圖卷積網路;時間卷積網路;時序異常偵測;深度學習;Graph Convolution Network;Temporal Convolution Network;Time Series Anomaly Detection;Deep Learning
    日期: 2021-08-06
    上傳時間: 2021-12-07 13:03:27 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來空氣汙染已成為重視的議題。台灣行政院環保署規劃,於2017年至2020年逐步布建1萬200個空氣品質感測器,由物聯網方式蒐集大量且時間解析度密集的空品數據來分析各地區的空氣污染現象。

    由於空氣品質感測器本體小且脆弱,容易受到日曬、雨淋或是其他物理因素使得裝置故障而偵測到錯誤的pm2.5數
    值,而目前的空氣品質感測器故障偵測方式仰賴現場做檢閱測量。但感測器佈設點過多,以抽檢方式做巡檢是沒有效率的巡檢方式。

    我們建構一個基於深度時空圖模型的異常偵測框架,模型包含圖卷積和時間卷積兩個方法,時間卷積處理過往空氣品質感測器偵測到的pm2.5時序資料,找出時間上的相關性,同時於每個時間點,對感測器與其周圍感測器點建立成一個無向聯通圖,由圖卷積的方式,找出空間特徵,最後模型預測當下的pm2.5數值,並與空氣品質感測器偵測到的數值計算R2-score分數,並對所有空氣品質感測器站點的R2-score做低到高排序,R2-score越低代表感測器越有可能出現異常。經過實驗,在有限巡檢個數之下,我們模型找到有問題個數的比率跟過往異常偵測的方法和隨機挑選都來的高,優先檢查本模型認定的故障感測器可降低巡檢所需的人力與時間成本。;Air pollution is an essential issue in Taiwan. From 2017 to 2020, the Environmental Protection Administration of Executive Yuan in Taiwan has gradually deployed 10,200 air quality sensors, which have collected a large amount of air quality data with high time resolution. However, because the air quality sensors are small and fragile, environmental factors, such as sun, rain, and other physical characteristics, may influence or even damage these sensors. As a result, the monitored PM2.5 values from these malfunctioning sensors are inaccurate. The current strategy to identify the failure sensors requires on-site inspection. However, since the number of sensors is huge and sensors are located all over Taiwan, it is inefficient to discover the malfunctioning sensors by scheduled inspection or random sampling.

    We propose an anomaly detection framework to identify the malfunctioning sensors based on a deep spatial-temporal graph model consisting of graph convolution and time convolution.

    The time convolution discovers the temporal relationship among the monitored PM2.5 values of a sensor. At each time point, an undirected connected graph is established between each sensor and its surrounding sensors. The graph convolution utilizes these graphs to learn the spatial characteristics. We leverage this deep spatial-temporal graph model to predict the current PM2.5 value of a target sensor. We calculate the R2-score between the predicted PM2.5 values and the monitored PM2.5 values for each sensor and rank these sensors by their corresponding R2-scores in ascending order. We claim a sensor has malfunctioned if the R2-score is low (i.e., the predicted and the monitored PM2.5 values are very different). Experimental results show that our model identifies more problematic sensors with fewer trials. Consequently, examining the sensors with the order outputted by our model can save labor and time costs.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML55檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明