中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/86697
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47013026      Online Users : 130
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/86697


    Title: 利用監督式機器學習預測身心疾病發生的可能性 -以Apex Legends為例;Using Supervised Machine Learning to Predict the Possibility of Physical and Mental Disorder - Taking Apex Legends for Example
    Authors: 高權宏;Kao, Chuan-Hung
    Contributors: 資訊管理學系
    Keywords: 監督式機器學習;網路遊戲成癮;睡眠問題;廣泛性焦慮症;Supervised Machine Learning;Internet Gaming Disorder;Sleep Problem;Generalized Anxiety Disorder
    Date: 2021-10-05
    Issue Date: 2021-12-07 13:07:46 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究預測 Apex Legends 玩家的網路遊戲成癮、睡眠問題、廣泛性焦慮症發生的可能性。透過發放問卷的方式了解玩家們的身心疾病的狀況後,利用這些玩家填寫的量表分數,使用監督式機器學習的方式使用玩家們的遊戲數據做訓練,並預測發生上述身心症狀的可能性。本研究使用邏輯回歸、決策樹、隨機森林、XGBoost、Na?ve Bayes去進行預測,發現隨機森林在預測網路遊戲成癮、睡眠問題、廣泛性焦慮症時有良好的表現,且在評估分類器的效能上,AUC的分數落在0.7上下,表示這些分類器能夠用在預測這些疾病上。此外本研究也會使用皮爾森相關係數去比對遊戲數據內哪些會與遊戲成癮、睡眠問題、廣泛性焦慮症有顯著的相關性的特徵。最後分析玩家族群、遊玩平台、年紀等等與本研究所探討的疾病之間的關聯。;This research predicts the likelihood of Apex Legends players internet gaming disorder, sleep problems, and generalized anxiety disorder. By issuing questionnaires to understand the players’ physical and mental illnesses. Using their scale scores to train on their game statistic by supervised machine learning and predict the likelihood of having physical and mental disorder. It uses logistic regression, decision tree, random forest, XGBoost, and na?ve bayes to make predictions in this research. It found that random forest has good performance in predicting internet gaming disorder , sleep problem and generalized anxiety disorder, and the AUC scores are 0.7, this situation means that this classifier can predict these diseases well. In addition, this research will also use the Pearson correlation coefficient to find which features in the game statistic are significantly correlated with internet gaming disorder, sleep problem, and generalized anxiety disorder. Finally, it analyzes the relationship between players, game platform, players’ age, etc. and find the relationship about these diseases in this research.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML130View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明