中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89458
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47014092      Online Users : 111
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/89458


    Title: 非厄米特二階拓樸電路之研究;The Research of Non-Hermitian Second-Order Topological Electric Circuits
    Authors: 鍾佺翰;Chung, Chuan-Han
    Contributors: 光電科學與工程學系
    Keywords: 非厄米特;二階拓樸;角態
    Date: 2022-09-27
    Issue Date: 2022-10-04 11:16:15 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文主要探討二維二階非厄米特拓樸絕緣體 (second-order topological insulator) 的物理特性。我們分別考慮方形晶格與可果美晶格兩種晶格型態,然後以電路的方式實現此拓樸絕緣體,並觀察零維的角態 (corner states) 與一維的非無能隙邊緣態 (non-gapless edge states) 如何形成。此電路系統可利用克希荷夫電路定律 (Kirchhoff′s circuit laws) 分別針對完全週期性的晶格 (periodic lattice) 結構與具有開放邊界 (open boundaries) 的有限週期結構兩種情況推導出電路拉普拉斯算符 (Circuit Laplacian) 與哈密頓矩陣 (Hamiltonian matrix),並解出後者的本徵值與本徵向量。其中本徵向量給出此系統的本徵振盪模態 (modes),而本徵值就是模態的 (複數) 振動頻率。分別考慮方形晶格與可果美晶格的拓樸不變量 (topological invariant),就可以在這兩種晶格結構中區分不同的二階拓樸相,以確認角態的存在。;In the thesis, we mainly discuss the physical properties of two-dimensional second-order non-Hermitian topological insulators. Structures of square lattice and Kagome lattice are considered, and the topological insulators are realized by means of appropriately defined electric circuits with the corresponding lattice structures. The study focuses on the zero-dimensional corner states instead of the one-dimensional non-gapless edge states.
      We use Kirchhoff′s circuit laws to derive the circuit Laplacian and Hamiltonian of the circuits for both the periodic lattice structure without boundary and the finite periodic structure with open boundaries. The circuit Hamiltonian matrix is used to solve for the eigenmodes/eigenstates of the system and their corresponding (complex valued) eigenfrequencies.
      Different topological phases can be distinguished by the topological invariants defined according to the band structures of the system, and the existence of the corner states can be confirmed by checking the topological invariants.
    Appears in Collections:[Graduate Institute of Optics and Photonics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML121View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明