中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89816
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47025772      Online Users : 109
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/89816


    Title: 基於 Altman Ratio和 Beneish M-Score 的財務困境預測中使用Stacking Ensemble Learning;Financial Distress Prediction Based on Altman Ratio and Beneish M-Score using Stacking Ensemble Learning
    Authors: 穆法德;Komar, Muhammad Fadhlil Hadi
    Contributors: 資訊工程學系
    Keywords: Altman Ratio;Beneish M-Score;財務困境預測;Stacking Ensemble Learning;Altman Ratio;Beneish M-Score;Financial Distress Prediction;Stacking Ensemble Learning
    Date: 2022-07-27
    Issue Date: 2022-10-04 12:00:55 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在以往的研究中,財務比率被廣泛用於構建其財務困境預測模型。 Altman Ratio旨在衡量一家公司的財務狀況,在各種環境和市場中預測破產是準確的,在學術研究中已成為最常用的預測方法; 然而,Altman Ratio取決於財務報表中數據的有效性,需要其他變數來評估財務報告操縱的可能性。 之前的研究都沒有試圖將五個Altman Ratio與三年Beneish M-Score相結合。 我們提出了Stacking Ensemble Learning,該方法將五個Altman Ratio轉化為短期和長期變數,並在危機發生前進行3年的Beneish M-Score進行全面分析。 這些見解不僅混合了所有財務指標資訊,而且還根據長期、短期條件以及財務報表操縱的可能性仔細評估了這些資訊,從而幫助公共投資做出貸款決策。;Financial Ratio had been used widely on the previous research to build their model of financial distress prediction. The Altman Ratios was become the most often used for predicting especially in academic studies. Altman Ratios purposes to measure a company’s financial health and it proven accurate to forecast bankruptcy in a wide variety of contexts and markets. However, the Altman Ratios depends on the validity of the data in the financial statements, then other variable is needed to assess the financial report manipulation possibility. None of the previous studies attempted to combine the five Altman Ratios with the 3 years Beneish M-Score. We proposed stacking ensemble learning that have an ability to threatens five Altman Ratios into Short-term and long-term variables and 3 years of Beneish M-Score before the crisis happens and performed a comprehensive analysis. These insights help public investment make lending decisions by not only mixing all financial indicator information, but also carefully assessing it based on long-term, short-term condition, and also possibility of financial statement manipulation.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML73View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明