中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89819
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47020766      Online Users : 116
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/89819


    Title: 長短期記憶神經網路於釣魚網站預測之研究
    Authors: 林峯慶;Lin, Fong-Ching
    Contributors: 資訊管理學系在職專班
    Keywords: 網路釣魚;長短期記憶網路;神經網路;機器學習;深度學習;Phishing;LSTM;Neural Network;machine learning;deep learning
    Date: 2022-07-07
    Issue Date: 2022-10-04 12:01:00 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 自從2020年全球受到Covid-19影響,民眾對非接觸式的數位交易需求增加,許多服務由實體轉至雲端,網路上的金融交易量大幅增加,居家上班的工作型態,也讓公司的機敏資料暴露在更容易受到攻擊的環境之下,網路釣魚在 2020 年開始呈現急速成長,至2021年底以成長兩倍。傳統的釣魚網站攻擊檢測模型依賴啟發式規則尋找特徵,結合機器學習進行預測,本研究想要提出一種模型來補足傳統模型的功能。
    本研究提出一種使用長短期記憶神經網路(long short term memory,LSTM)和啟發式規則的混合特徵模組,該模組以啟發式規則收集重要特徵,再以LSTM萃取網址特徵彌補啟發式規則的弱點,最後使用類神經網路(Neural Network,NN)進行預測。實驗中發現LSTM確實能找出潛藏的特徵以輔助模型進行更準確的釣魚網站預測,準確度(ACC)為0.997。
    ;Since the global impact of Covid-19 in 2020, the demand for contactless digital transactions has increased, many services have moved from the physical to the cloud, financial transactions on the Internet have increased dramatically, and the work-from-home work style has exposed companies′ sensitive data to a more vulnerable environment. The number of phishing attacks will begin to grow rapidly in 2020 and will increase twofold by the end of 2021. Traditional phishing attack detection models rely on heuristic rules to find features and combine with machine learning to make predictions.
    This study proposes a hybrid feature module using long short term memory (LSTM) and heuristic rules. The module collects important features with heuristic rules, and then uses LSTM to extract URL features to supplement the heuristic rules. Weaknesses, and finally use a neural network (Neural Network, NN) for prediction. In the experiment, it is found that LSTM can indeed find hidden features to assist the model to make more accurate predictions of phishing websites, with an accuracy (ACC) of 0.997.
    Appears in Collections:[Executive Master of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML83View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明