中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89859
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 81570/81570 (100%)
造访人次 : 47021345      在线人数 : 121
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89859


    题名: 結合深度學習和生物階層式分類架構的種子辨識系統;Seed Recognition System Combining Deep Learning with Biological Hierarchical Classification Architecture
    作者: 陳庭萱;Chen, Ting-Hsuan
    贡献者: 資訊工程學系
    关键词: 辨識系統;階層式架構;深度神經網路;遷移學習
    日期: 2022-08-01
    上传时间: 2022-10-04 12:02:35 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文提出一個結合深度學習和生物階層式分類架構的種子分類器,用於大類別數的種子辨識,我們先對種子影像進行影像前處理,擷取出單顆完整種子影像後,輸入階層架構的殘差神經網路,搭配生物分類法的科別、屬別、種別,作為三階層的分類流程,首先將種子影像進入科別的神經網路模型,分類出該種子的科別後,再將影像輸入進此科別的屬別層網路,最後再進入此分類器的第三層,進行種別的分類,輸出最終決策。我們以深度學習與階層式架構對含有衍生種的784類種子與560類的種子樣本進行分類實驗,分別可達73.13%與92.33%的辨識率,與單一神經網路(Resnet50)和混合式神經網路架構(Resnet50+Siamese)的12.7%和31.33%的辨識率相比,實驗結果顯示我們的方法具有明顯優勢,且階層式架構將分類流程分開的方式,能夠經由階層判斷分類錯誤的原因,彌補深度學習的不可解釋性。;This paper proposes a seed classifier that combines deep learning and biological hierarchical classification architecture for seed identification of large number of categories. Residual neural network, combined with the family, genus, and species of the biological taxonomy, as a three-level classification process, first enter the seed image into the neural network model of the family, and after classifying the family of the seed, then The image is input into the category layer network of this class, and finally enters the third layer of the classifier to classify the category and output the final decision. We use deep learning and hierarchical architecture to classify 784 types of seeds and 560 types of seed samples containing derived species, and the recognition rates can reach 73.13% and 92.33%, respectively. Compared with the recognition rate of 12.7% and 31.33% of the network architecture (Resnet50+Siamese), the experimental results show that our method has obvious advantages, and the hierarchical architecture separates the classification process, which can determine the cause of the classification error through the hierarchy, Compensate for the uninterpretability of deep learning.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML119检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明