中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/90036
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47023036      Online Users : 187
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/90036


    Title: 應用事件擷取於故事理解之研究;Story Retelling and Summarization via Story Event Extraction
    Authors: 黃覺修;Hunag, Jue-Xiu
    Contributors: 資訊工程學系
    Keywords: 機器自動摘要;事件擷取;遷移式學習;Abstractive Summarization;Event Extraction;Transfer Learning
    Date: 2022-09-22
    Issue Date: 2022-10-04 12:08:47 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 摘要作為人們快速了解資訊的手段,一直以來都是自然語言處理研究的主要方向之一。現今的摘要模型主要都是依靠深度學習模型,讓模型自己決定文章的重點以及摘要生成的內容,因此人為可控制的因素較小。而本論文認為在某些摘要的應用場景中,摘要的重點不應該只依靠模型本身決定,而需要一些其他的資訊來輔助模型產生更貼近文章重點的摘要。最終,我們在現有摘要模型的輸入上做一些改動,使其能夠產生相對應內容的摘要。除此之外,我們也針對資訊擷取模型進行遷移式學習,使其能更適合應用於我們的使用場景。;Abstract is the main method that help people quickly understand the information of the article, and it is also a main research topic of Natural Language Processing. Modern abstractive summarization model mainly relies on deep learning methods, and need model itself to determine the key point of the article and the content of the abstract, there few human control factors in it. In this paper, we believe that in some scenarios of summarization, the content of the abstract should not only rely on model itself, we need to give more additional information to help model generate topic related abstract. Finally, we modify the input of the model to allow it generate the abstract with corresponding content. Additionally, we apply transfer learning on existing information extraction model to help it more suitable in our scenario.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML97View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明