English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 47007861      線上人數 : 100
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95510


    題名: C2CL: Centroid-Concentrated Contrastive Learning on Fault Detection and Classification in Industry 4.0
    作者: 謝承紘;HSIEH, CHENG-HUNG
    貢獻者: 資訊管理學系
    關鍵詞: 工業4.0;深度學習;監督式對比學習;故障檢測與分類(FDC);Industry 4.0;Deep learning;Supervised Contrastive Learning;Fault Detection and Classification (FDC)
    日期: 2024-07-17
    上傳時間: 2024-10-09 16:54:49 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著工業4.0革命改變傳統製造流程,製造業在生產過程中廣泛部署感測器以即時收集製程監控參數,旨在降低最終產品的瑕疵率。製造業重視故障檢測與分類(FDC)任務,以找出關鍵的製程錯誤原因。近年來,研究人員開始探索監督式對比學習(SCL),通過將原始數據轉換為具辨別性的特徵表示來優化模型,從而提高下游分類器的準確性。然而,類別不平衡的工業製程資料集、長序列製程資料的獨特性、以及SCL在處理特徵相似但屬於不同類別數據時的挑戰,導致模型訓練難以達到最佳效果。為了解決這一問題,我們提出了基於中心點集中特性的對比學習(C2CL)架構,在SCL的基礎上引入各類別樣本群的共同特徵作為附加資訊。實驗結果證實,基於C2CL架構訓練的編碼器能生成具類間分離和同類內集中特性的特徵表示。我們通過全面的實驗研究,證明了所提出的模型在所有評估指標上均優於目前最先進的基準模型,尤其在真實電子零組件供應商資料集上,F1-score指標提升了5.98%。;With the revolution of Industry 4.0 transforming traditional manufacturing processes, sensors are widely deployed in the manufacturing industry to collect real-time process monitoring parameters, aiming to reduce the defect rate of the final product. The industry focuses on fault detection and classification (FDC) tasks to identify key process error causes. In recent years, researchers have explored supervised contrastive learning (SCL), optimizing models by transforming raw data into discriminative feature representations, thereby improving downstream classifier accuracy. However, issues such as class imbalance in industrial process datasets, the unique nature of long sequence process data, and the difficulty of SCL in handling similar features that belong to different classes hinder optimal model training. To address this problem, we propose a Centroid-Concentrated Contrastive Learning (C2CL) framework, which introduces the common features of each class sample group as additional information based on SCL. Experimental results demonstrate that the encoder trained under the C2CL framework can generate feature representations with inter-class distraction and intra-class concentration. Through comprehensive experimental investigation, we prove that our proposed model outperforms the current state-of-the-art benchmark models across all evaluation metrics, especially achieving a 5.98% improvement in the F1-score on a real-world electronic component supplier dataset.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML67檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明