English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 47007873      線上人數 : 107
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95519


    題名: 利用雙層模型架構達成半導體製程參數設置最佳化;The Study of Dual Discriminated Generative Adversarial Network
    作者: 楊泓益;YANG, HONG-YI
    貢獻者: 資訊管理學系
    關鍵詞: 工業4.0;生成對抗網路;強化式學習;深度學習;參數最佳化;Industry 4.0;Generative Adversarial Networks;Reinforcement Learning;Deep Learning;Parameter Optimization
    日期: 2024-07-18
    上傳時間: 2024-10-09 16:55:19 (UTC+8)
    出版者: 國立中央大學
    摘要: 近幾年來,工業4.0已經大幅改變了人們的生活,整合物聯網、大數據、人工智
    慧、雲端運算,利用大量的資訊進行分析、預測以及應用達成更高效的生產技術。半
    導體在其中扮演著十分關鍵的角色,半導體作為電子產品的核心,其製造流程對電子
    產品影響很大。在半導體製造過程中,參數設定將極大地影響生產良率和能源效率。
    目前的方法無法有效處理大量參數推薦以及參數之間的相互關係。在本文中,我們提
    出一個能夠有效處理這些問題的模型-DDGAN。DDGAN使用雙層架構模型來推薦序列參
    數,內層模型訓練目標為生成類似真實的資料,而外層模型的訓練目標則為生成良率
    為正常的資料,藉由這種模型架構能夠有效的推薦出符合需求的參數序列。能夠使機
    台的參數設置降低試錯成本並找出新的最佳參數組合。;In recent years, Industry 4.0 has significantly transformed people′s lives by integrating
    the Internet of Things (IoT), big data, artificial intelligence (AI), and cloud computing. These
    technologies leverage vast amounts of information to conduct analysis, make predictions, and
    enhance the efficiency of production techniques. Semiconductors play a crucial role in this
    context, serving as the core of electronic products, with their manufacturing processes greatly
    influencing the performance of these products. During semiconductor manufacturing,
    parameter settings profoundly impact production yield and energy efficiency. Current methods
    are insufficient in effectively handling large-scale parameter recommendations and the
    interrelationships among parameters. In this paper, we propose a model named DDGAN to
    address these challenges effectively. DDGAN employs a dual-layer architecture model for
    sequential parameter recommendation. The inner model is trained to generate data similar to
    real-world data, while the Exterior model aims to generate data with normal yield rates. This
    model architecture allows for the efficient recommendation of parameter sequences that meet
    specific requirements, thereby reducing trial-and-error costs and identifying new optimal
    parameter combinations for machine settings.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML93檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明