中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95557
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47019441      Online Users : 112
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95557


    Title: Planting a Forest in Sky: Harnessing Parallelism in Skyrmion Racetrack Memory for Efficient Random Forest Data Placement
    Authors: 黃意勛;Huang, Yi-Hsun
    Contributors: 資訊工程學系
    Keywords: 斯格明子;賽道記憶體;隨機森林;高平行度;Skyrmion;Racetrack memory;Random forest;Parallelism
    Date: 2024-07-23
    Issue Date: 2024-10-09 17:00:48 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 斯格明子賽道記憶體(Sky-RM)因其高存儲密度的潛力而備受關注,
    尤其是對於資料儲存需求不斷增長的現今尤為重要。Sky-RM 利用斯格明子
    的奈米尺度尺寸,與傳統記憶體技術相比顯著減少了物理空間需求。然而,
    由於其獨特的特性,包括位移、生成和消除,如果缺乏有效的演算法來管
    理這些操作,Sky-RM 的整體性能可能顯著低於傳統的動態隨機存取記憶體
    (DRAM)。
    因此,本論文致力於開發一種具有高並行性、低延遲、低能耗和高空
    間利用率的資料擺放方式。此外,我們將我們的方法應用到基於隨機森林
    的機器學習框架中,以檢驗是否實現了高平行度以及延遲和能耗的減少。;Skyrmion-based Racetrack Memory(Sky-RM) has gained attention due to its potential to offer high storage density, which is increasingly critical as the demand for data storage continues to grow. Sky-RM leverages the nanoscale size of skyrmions, allowing for a significant reduction in physical space requirements compared to traditional memory technologies. However, due to its unique characteristics, including shifting, generating, and eliminating, Sky-RM can exhibit significantly poorer overall performance compared to traditional DRAM if it lacks a robust algorithm to manage
    these operations effectively. Therefore, this paper is dedicated to develop a high parallelism, low latency, low
    energy consumption and high space utilization placement strategy. Furthermore, we integrate our method onto the random forest based machine learning framework to see whether high parallelism and reductions in latency and energy consumption have been achieved.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML119View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明