中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/96053
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47014723      Online Users : 96
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/96053


    Title: Enhance Few-Shot Learning with Transformer Architectures
    Authors: 黃文城;Ryan, Dick Hansel
    Contributors: 人工智慧國際碩士學位學程
    Keywords: 小樣本學習;深度學習;密集網路;多頭注意力機制
    Date: 2024-11-15
    Issue Date: 2025-04-09 15:50:16 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著對深度學習模型在小數據集上高效表現需求的提升,小樣本學習( fewshot learning)逐漸成為一個熱門研究領域。其目標是在每個類別只有少量標註樣本的情況下訓練模型,並根據測試數據的處理方式分為歸納式( inductive)與轉導式( transductive)方法。本研究提出了一種基於 Transformer 架構的歸納式小樣本學習模型——DAPNet。該模型結合了密集網路( Dense Networks)與多頭注意力機制( Multi-Head Attention),並改進了激活函數,實現了 Ranger 優化器的應用,有效提升了準確性和訓練效率。我們在MiniImageNet和TieredImageNet 這兩個知名的小樣本學習基準數據集上對 DAPNet 進行了評估。結果顯示, DAPNet 在準確性方面優於或媲美當前的先進模型。;With the growing demand for deep learning models to excel on limited datasets, few-shot learning has gained prominence as a promising area of research. Its goal is to train models using only a few labeled examples per class. Depending on
    how test data is processed, few-shot learning methods are classified into inductive and transductive approaches. In this work, we present DAPNet, an inductive fewshot learning model based on the Transformer architecture. Our model incorporates Dense Networks and Multi-Head Attention, alongside modifications to the activation function and the implementation of the Ranger optimizer, which lead to enhanced accuracy and training efficiency. We evaluate DAPNet on two widely recognized benchmark datasets for few-shot learning: MiniImageNet and TieredImageNet. The experimental results show that DAPNet delivers outstanding performance, either exceeding or matching the accuracy of state-of-the-art models.
    Appears in Collections:[ International Graduate Program in Artificial Intelligence ] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML59View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明