English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 47011540      線上人數 : 81
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/96092


    題名: 根據定性與定量資料預測企業信用評級;Predicting Corporate Credit Ratings Based on Qualitative and Quantitative Data
    作者: 賴沂彤;Lai, Yi-Tung
    貢獻者: 工業管理研究所
    關鍵詞: 企業信用評級預測;MD&A文本分析;深度學習;極限梯度提升法;Corporate Credit Rating Prediction;MD&A;Deep Learning;XGBoost
    日期: 2025-01-08
    上傳時間: 2025-04-09 16:01:27 (UTC+8)
    出版者: 國立中央大學
    摘要: 企業信用評級是資本市場裡投資者對一家公司的重要判斷依據,公開評級結果能夠使企業的違約風險與信用狀況更加公開透明,以降低投資者與經營者之間的資訊不對稱,讓資本市場的交易更公平。

    由於傳統的企業信用評級評定過程非常耗費時間與金錢成本,為了即時且快速地因應市場變化作出更新,採用機器學習方法來預測企業信用評級成了近年常被討論的研究課題。

    本研究將文本資料(公司管理階層觀點)透過自然語言模型(NLP)處理後匯出文本向量表示,並加入檢索增強生成(RAG)的輸出結果,最後再結合傳統財務數據並匯入極限梯度提升法(XGBoost)進行企業信用評級的預測,來獲得一個兼顧準確率與可解釋力的多元分類模型。
    ;Corporate credit rating serves as a critical reference for investors in the capital market to evaluate a company. Publicly available rating results enhance transparency regarding a company’s default risk and credit status, reducing information asymmetry between investors
    and operators, and promoting fairer transactions in the capital market.

    Traditional corporate credit rating processes are time-consuming and costly. To respond to market changes promptly and efficiently, applying machine learning methods to predict corporate credit ratings has become a widely discussed research topic in recent years.

    This study leverages textual data (MD&A), processed through natural language models (NLP), to generate text vector representations. It incorporates the output of Retrieval-Augmented Generation (RAG) and integrates it with traditional financial data. These inputs are then fed into the Extreme Gradient Boosting (XGBoost) algorithm to predict corporate credit ratings, aiming to develop a multi-class classification model that balances accuracy and interpretability.
    顯示於類別:[工業管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML62檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明