干涉儀在光學元件測量扮演著不可或缺的角色,其在檢測表面平整度中 功不可沒。現今許多大型光學元件應用於國防、天文等行業,子孔徑干涉術 儼然成為未來趨勢。若檢測技術能夠提升,在光學元件製作工藝上就能繪出 嶄新的篇章。 相較於以往使用球面標準鏡進行曲面量測,在本研究中,將會提出了全 新的量測方法,既是以平面標準鏡作為干涉儀架構來檢測球面樣品。通過將 樣品劃分為多個子孔徑進行拼接,能夠減少干涉條紋擷取時引入的像差,同 時也能突破量測範圍的限制。 本文將會從使用到的五步相移干涉術及子孔徑拼接干涉術等基礎理論, 延伸至後續實驗的進行。為了確保實驗量測的準確性,在實際量測前,會將 相位模擬引入該演算法中進行分析與討論。根據實驗結果顯示,目前可量測 範圍可達總面積70%。在平面量測中,方均根誤差能達到0.0139wave。球 面樣品的曲率半徑誤差可達到約2%,系統架構可量測樣品極限為±833mm。 驗證了本實驗的可行性。 總言之,本實驗架構以平面標準鏡頭取代球面標準鏡頭,不但能有效的 降低標準鏡頭購置的成本,對於操作人員的專業度要求也降低了許多。在光 學檢測中提出嶄新的做法,唯有在誤差校正及量測範圍中仍有可持續進步 的空間。;Interferometers play an indispensable role in measuring optical components, particularly in assessing surface flatness. Today, many large optical components are utilized in industries such as defense and astronomy, making sub-aperture interferometry a rising trend. If detection technology can be improved, it will pave the way for new advancements in the manufacturing process of optical components. Compared to the traditional method of using Transmission Spheres for curved surface measurement, this study introduces a novel approach by utilizing a Transmission Flat within the interferometer setup to measure spherical samples. By dividing the sample into multiple sub-apertures for stitching, this method minimizes aberrations introduced during the capture of interference fringes and overcomes limitations in the measurement range. This paper will extend from the foundational theories of the five-step phase shifting interferometry and sub-aperture stitching interferometry to the execution of subsequent experiments. vi To ensure the accuracy of the experimental measurements, phase simulations will be incorporated into the algorithm for analysis and discussion before actual measurements. According to the experimental results, the current measurable range reaches up to 70% of the total area. In flat surface measurements, the root mean square error achieves 0.0139 waves, while the curvature radius error for spherical samples reaches approximately 2%. The system is capable of measuring samples up to a limit of ±833mm, verifying the feasibility of this experiment. In summary, this experimental setup replaces the Transmission Spheres with Transmission Flats, effectively reducing the cost of acquiring standard mirrors while also lowering the expertise required for operators. Although the method introduces an innovative approach to optical detection, there is still room for improvement in terms of error correction and measurement range.