English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 47010217      線上人數 : 139
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/96302


    題名: Advanced Cyber Threat Intelligence Analysis – From Relationship Mapping to Threat Prioritization
    作者: 詹德蘭;Rajendran, Vaitheeshwari
    貢獻者: 資訊工程學系
    關鍵詞: 攻击优先级;因果分析;通用弱点枚举(CWE);CTI;数据组件;IoC分析;MITRE ATT&CK技术;MITRE数据源;SecureBERT;Attack prioritization;causal analysis;Common Weakness Enumeration (CWE);CTI;data components;IoC analysis;MITRE ATT&CK techniques;MITRE data source;SecureBERT
    日期: 2025-01-22
    上傳時間: 2025-04-09 17:38:32 (UTC+8)
    出版者: 國立中央大學
    摘要: 网络威胁情报(CTI)报告提供了对网络安全威胁和攻击的重要见解,但由于这些报告的复杂性和细微差别,提取关键因果因素和优先排序攻击技术仍然具有挑战性。传统的方法面临诸如缺乏标记数据和报告中不一致的词汇使用等问题。为了解决这些挑战,我们提出了TRACE(技术关系分析和因果因素提取),这是一种利用CTI报告提取与对抗技术相关的因果因素并生成综合因果图的新框架。TRACE结合了模式提取和标记方法,克服了现有方法的局限性。利用增强知识映射和深度学习技术的基于句子的双向编码器表示转换器(SBERT)嵌入,TRACE在报告中发现并建模攻击技术之间的因果关系。我们在CTI报告数据集上进行的实验表明,TRACE在预测因果因素方面表现出色,F1得分为0.87。

    在TRACE成功的基础上,我们引入了FOCUS(战略分析下的网络安全优化框架),这是一个旨在优先排序CTI报告中的攻击技术的精简框架。FOCUS利用SecureBERT模型和带有条件随机场(CRF)层的BiLSTM分类器来分析妥协指标(IoC),并对攻击技术和通用弱点枚举(CWE)实体进行句子级预测。我们的方法包括提取关键词、注释句子以及标记与IoC相关的句子进行训练。在从CTI报告中提取实体方面,FOCUS取得了卓越的F1得分90%,显著提升了传统分析方法,通过有效分析超过930份报告来优先排序网络威胁。我们基于实体的时间关系创建实体的顺序流,并提出了七个度量标准来计算CTI报告中技术的重要性。这种复杂的方法结合了统计分析和定性评估,以计算威胁优先级,提供一个简洁、优先的威胁清单,以支持更有效的网络安全策略。
    ;Cyber Threat Intelligence (CTI) reports provide critical insights into cybersecurity threats and attacks, yet extracting key causal factors and prioritizing attack techniques remains challenging due to the complexity and nuances of these reports. Traditional methodologies grapple with issues such as the lack of labeled data and inconsistent vocabulary usage across reports. To address these challenges, we propose TRACE (Technique Relationship Analysis and Causal Factor Extraction). This novel framework leverages CTI reports to extract causal factors related to adversarial techniques and generate a comprehensive causal graph. TRACE combines pattern extraction and tagging methods to overcome the limitations of existing approaches. Utilizing Sentence-based BERT embeddings enhanced with knowledge mappings and deep learning techniques, TRACE discovers and models causal relationships between attack techniques in the reports. Our experiments on a dataset of CTI reports demonstrated TRACE′s superior performance with a 0.87 F1 score in predicting causal factors.
    Building on the success of TRACE, we introduce FOCUS (Framework for Optimizing Cybersecurity Under Strategic Analysis), a streamlined framework designed to prioritize attack techniques within CTI reports. FOCUS leverages the SecureBERT model and a BiLSTM classifier with a Conditional Random Fields layer to analyze Indicators of Compromise (IoC) and perform sentence-level prediction of attack techniques and Common Weakness Enumeration (CWE) entities. Our method involves extracting keywords, annotating sentences, and tagging IoC-associated sentences for training. Achieving an exceptional F1 score of 90% in entity extraction from CTI reports, FOCUS significantly enhances traditional analytical methods by effectively analyzing over 930 reports to prioritize cyber threats. We create a sequential flow of entities based on their temporal relations and propose seven metrics to calculate the significance of a technique in the CTI report. This sophisticated method combines both statistical analysis and qualitative assessments to calculate threat priorities, providing a concise, prioritized list of threats to support more effective cybersecurity strategies.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML23檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明