中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/96435
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 81570/81570 (100%)
造访人次 : 47013230      在线人数 : 177
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/96435


    题名: 利用聚對苯二甲酸乙二酯廢棄物製備多階層奈米孔洞金屬有機骨架應用於去除水中銅及鋅之研究;Hierarchical Nanoporous Metal-Organic Frameworks (MOFs) prepared from linker-derived PET waste for applying removal of Cu and Zn
    作者: 阮氏紅;Hong, Nguyen Thi
    贡献者: 環境工程研究所
    关键词: 多階層奈米孔洞;錫基金屬有機骨架;聚對苯二甲酸乙二酯 (PET);反應曲面法;重金屬;吸附;Hierarchical nanoporous;Tin-based metal-organic frameworks;polyethylene terephthalate PET;Response Surface Methodology;Heavy Metal;Adsorption
    日期: 2024-10-09
    上传时间: 2025-04-09 18:28:57 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究目的為使用廢棄聚對苯二甲酸乙二酯 (PET),開發多階層奈米孔洞性錫基金屬有機骨架 (HP-Sn-MOFs),並利用 HP-Sn-MOFs 之獨特層級結構、高度穩定性及多重活性位點等特性,應用於水中銅 (Cu) 及鋅 (Zn) 之吸附去除。本研究使用反應曲面法 (RSM) 分析PET廢棄物萃取對苯二甲酸(H2BDC)的最佳條件,及評估合成 HP-Sn-MOFs 之影響,以及HP-Sn-MOFs 對 Cu 及 Zn 的吸附容量、去除效率及再生性能之試驗評估。
    根據PET廢棄物製備之H2BDC結果顯示,NaOH濃度對於H2BDC產率及回收率的影響,相較於水解溫度及時間更為顯著,其中以200℃反應12小時,及使用5% NaOH為最佳之條件。二甲基亞碸(DMSO)與檸檬酸(C6H8O7)之使用,相較於硫酸(H2SO4)而言,更能有效增大粒徑。在八個連續循環測試中,經由DMSO與C6H8O7的混合物所產生的H2BDC,具有96%至98%之高純度。前述結果均說明二甲基亞碸與檸檬酸之使用在提高H2BDC品質及粒徑之有效性。
    本研究結果亦顯示三氟乙酸可有效形成多重活性位點的多階層孔洞性,以及 HP-Sn-MOF 結構,其中結晶度指數 (CI)、產率、比表面積、孔隙體積及穩定性,均可有效提升。以去離子水作為溶劑之試驗結果顯示,HP-Sn-MOFs最佳條件為148℃、反應24小時、H2BDC/TFA莫爾比為1.7,其產率達到98.51 ± 1.47%,結晶度指數為80.21 ± 1.32%,且並無檢測到H2BDC的殘留。然而,使用乙醇作為溶劑之試驗結果,HP-Sn-MOFs最佳條件為156℃、反應36小時、H2BDC/TFA莫爾比為1.2,其材料之比表面積達到255.8 m²/g,孔隙體積為0.53 cm³/g。前述試驗將乙醇與水作為混合溶劑,並在Sn-MOF合成中添加三氟乙酸及乙酸,顯著提高材料之比表面積及孔隙體積。本研究製備之HP-Sn-MOF對Cu的吸附容量,在40分鐘後達到375.94 mg/g,對Zn的吸附容量在50分鐘後達到279.33 mg/g。乙二胺四乙酸 (EDTA) 可提供較高之吸附容量及能力,其中HP-Sn-MOF 具有較佳之再生性能,其中Cu 及Zn 的去除效率,分別在經過十個循環測試後,仍可保持在89.83 % 及82.74 %。HP-Sn-MOF對Cu及Zn的主要吸附機制,主要是透過配位作用及靜電相互作用之結果,整體而言,本研究製備之HP-Sn-MOF 具有去除水中 Cu 及 Zn 之應用潛力。
    ;This research aims to develop hierarchical nanoporous tin-based metal-organic frameworks (HP-Sn-MOFs) using a linker derived from polyethylene terephthalate (PET) waste. These HP-Sn-MOFs exhibited a unique hierarchical structure with high stability and multiple active sites, enhancing their wide range of applicability, particularly for the adsorption of Cu and Zn in aqueous media. Response Surface Methodology (RSM) was employed to analyze the influence of critical parameters on the optimal extraction of terephthalic acid (H2BDC) from PET waste and the synthesis optimization of HP-Sn-MOFs under defect engineering, as well as optimal conditions for adsorption of Cu and Zn. Various monocarboxylic acids as modulators, including trifluoroacetic acid (TFA), formic acid (FA), and acetic acid (AA), were investigated to determine their effects on the characteristics of HP-Sn-MOFs. The study also evaluated the adsorption capacity, removal efficiency, and regeneration of HP-Sn-MOFs for Cu and Zn.
    The H2BDC extraction from PET waste data showed that NaOH concentration had a more significant effect on H2BDC yield and recovery ratio than hydrolysis temperature and time. The optimal conditions were reached after 12 hours at 200°C and 5% NaOH. The combination of DMSO and citric acid (C6H8O7) was more effective at increasing particle size than H2SO4. Throughout eight consecutive cycles of the DMSO and C6H8O7 mixture, the H2BDC yield maintained a high purity level, ranging from 96% to 98%. These findings underscore the effectiveness of using a combination of DMSO and C6H8O7 to enhance the quality of H2BDC, achieving maximum particle sizes (57.4 µm) and high purity that meet commercial product criteria. This method presents a promising solution for extracting H2BDC from white PET bottle waste, with potential implications for the recycling industry and a positive environmental impact.
    These results highlight the critical role of TFA in forming hierarchical nanoporous and architectural HP-Sn-MOF structures with multiple active sites, enhancing crystallinity index (CI), yield, surface area, pore volume, and stability through defect engineering. Optimal conditions for HP-Sn-MOFs using DI water as a solvent included a temperature of 148℃ for 24 h and a molar ratio of H2BDC/TFA of 1.7, resulting in a yield of 98.51 ± 1.47% and a CI of 80.21 ± 1.32%, with no detectable residual H2BDC. Conversely, for HP-Sn-MOFs using ethanol as a solvent, optimal conditions were a temperature of 156℃ for 36 h, a molar ratio of H2BDC/TFA of 1.2, achieving a surface area of 255.8 m²/g, and a pore volume of 0.53 cm³/g. These findings underscore the effectiveness of the synthesis method for HP-Sn-MOF achieved through optimizing critical parameters and defect engineering techniques by modulators. Combining ethanol with water as a mixed solvent and adding TFA and AA in Sn-MOF synthesis significantly enhanced the surface area and pore volume. Under optimal conditions, including a metal concentration of 150 mg/L, a pH of 6.0 for Cu and 7.0 for Zn, and an adsorbent dose of 0.2g per 1L metal solution, HP-Sn-MOF achieved a maximum adsorption capacity (qmax) of 375.94 mg/g for Cu after around 40 min and 279.33 mg/g for Zn after approximately 50 min. Through the high desorption capacity of Cu and Zn by ethylenediaminetetraacetic acid (EDTA), HP-Sn-MOF demonstrated excellent recyclability, maintaining a high removal efficiency of 89.83 % for Cu and 82.74 % for Zn over ten cycles. Coordination and electrostatic interactions were the primary mechanisms for Cu and Zn adsorption by the HP-Sn-MOF. These findings reveal the HP-Sn-MOF as a potential adsorbent for removing Cu and Zn from aqueous media.
    显示于类别:[環境工程研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML11检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明