中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97184
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 60841338      Online Users : 403
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/97184


    Title: 大型語言模型增強人機協作知識圖譜建構;LLM-Enhanced Human-AI Collaborative Knowledge Graph Construction
    Authors: 李岳峻;Li, Yue-Jun
    Contributors: 人工智慧國際碩士學位學程
    Keywords: 大型語言模型;人機協作;知識圖譜;RAG
    Date: 2025-07-23
    Issue Date: 2025-10-17 10:56:08 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著人工智慧發展, KG 已成為結構化知識管理的關鍵技術,然其建構過程耗時費力,且LLM雖能提升效率,卻面臨生成內容不穩定與產生幻覺等挑戰。現有自動化工具多缺乏互動性與即時修正能力,對非技術背景使用者門檻較高,為解決此問題,本研究設計並實現了一個名為「HCIKG」的大型語言模型增強人機協作知識圖譜建構系統。HCIKG 透過整合語音辨識、多輪對話引導,以及創新的 RAG 模組,將使用者的自然語言指令精準轉換為資料庫查詢語法,為驗證系統成效,本研究透過四階段實驗,證實HCIKG在系統易用性與人機協作效能上,均顯著優於傳統工具,其核心的RAG提示策略,亦在準確率與運算成本間取得最佳平衡,最終,產出的高品質知識圖譜更能成功應用於自動化考題生成等下游任務,完整展現了本框架的有效性。;The construction of Knowledge Graphs (KGs), a key technology in structured knowledge management, presents a significant challenge due to its time-consuming and labor-intensive nature. While Large Language Models (LLMs) can enhance efficiency, they grapple with issues of instability and hallucination in content generation. Existing automated tools often lack interactivity and real-time correction capabilities, posing a high technical barrier for non-technical users. To address these issues, this study designs and implements an LLM-Enhanced Human-AI Collaborative Knowledge Graph Construction system, named "HCIKG". HCIKG integrates speech recognition, multi-turn dialogue guidance, and an innovative Retrieval-Augmented Generation (RAG) module to precisely convert users′ natural language commands into database query syntax.
    A four-stage experiment was conducted to validate the system′s efficacy. The results indicate that HCIKG significantly outperforms traditional tools in system usability and collaborative performance. Furthermore, its core RAG-based strategy strikes an optimal balance between accuracy and computational cost. The practical utility of the framework is demonstrated by the successful application of the resulting high-quality knowledge graph in downstream tasks, such as automated exam question generation, thus confirming the framework′s overall effectiveness.
    Appears in Collections:[ International Graduate Program in Artificial Intelligence ] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML62View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明