| 摘要: | 本研究主要以具有良好之平面性、可有效延伸共軛,並提升電荷傳輸能力之噻吩並吡咯酮二聚體 (Thienoisoindigo, TII)為核心,開發出七種界面修飾層材料,應用於鉛鈣鈦礦太陽能電池 (Pb-PSC)。 本論文第一系列研究中,於TII兩端修飾全氟苯 (FP)以增加分子與鈣鈦礦層之作用力,氟原子可有效鈍化鈣鈦礦層未配位金屬之缺陷。全氟苯 (FP)屬於強拉電子基團可有效降低分子之HOMO、LUMO能階,使分子之LUMO與鈣鈦礦層之導帶更匹配,可更有效地提取電子。引入不同長度之烷鏈修飾,調節適當之分子間距,避免分子過度堆積,確保分子之溶解度與成膜性,以優化元件製程。開發出三種電子傳輸界面層材料 (ETIM):DFP-TII-4 (1)、DFP-TII-8 (2)、DFP-TII-16 (3)。其中,DFP-TII-8 (2)與DFP-TII-16 (3)的光電轉換效率 (PCE)分別為22.20%和22.26%。 第二系列研究中,於核心TII一端以全氟苯 (FP)修飾,另一端接上不同之錨定基團丙二腈 (Malononitrile,MN)與氰甲基磷酸二乙酯 (PE),使分子排列更加有序,提升電荷傳輸效率。同樣引入不同長度之烷鏈以獲得最合適之分子溶解度,開發出四種材料:FPMN-TII-8 (4)、FPMN-TII-16 (5)、FPPE-TII-8 (6)及FPPE-TII-16 (7)。目前FPMN-TII-16 (5)、FPPE-TII-8 (6)及FPPE-TII-16 (7)作為電洞傳輸界面層材料 (HTIM),分別獲得光電轉換效率 (PCE)為21.13%、20.51%與21.22%。元件效率優化中。;A series of novel organic optoelectronic materials based on Thienoisoindigo (TII) were developed and applied in tin-based perovskite solar cells (Sn-PSCs). In the first series, three materials, i.e. DFP-TII-4 (1), DFP-TII-8 (2), and DFP-TII-16 (3) were synthesized by functionalizing the TII core with electron-withdrawing perfluorophenyl (FP) groups. The TII core possess high planarity, which facilitated charge transporting efficiency. Due to the high electronegativity of fluorine atoms, they are capable of lowering the HOMO/LUMO energy level to better match the Perovskite (PSK) layer. In addition, fluorine may passivate defects by coordinating with the under-coordinated metal ions in the perovskite layer. Alkyl chains adjusted the molecular packing and solubility, optimizing the device fabrication process. Currently, DFP-TII-8 (2) and DFP-TII-16 (3) were applied as electron transporting interfacial materials (ETIMs) and achieved power conversion efficiency (PCE) of 22.20% and 22.26%, respectively. In the second series, four new materials, i.e. FPMN-TII-8 (4), FPMN-TII-16 (5), FPPE-TII-8 (6), and FPPE-TII-16 (7) were synthesized which TII core was functionalized with FP group at one end and two anchoring groups such as malononitrile or diethyl (cyanomethyl) phosphonate was introduced at the other end. Currently, FPMN-TII-16 (5), FPPE-TII-8 (6) and FPPE-TII-16 (7) were applied as hole transporting interfacial materials (HTIM) and achieved PCEs of 21.13%, 20.51% and 21.22%, respectively. The newly developed ETIMs and HTIMs are currently undergoing device testing. |