本研究針對潛望式手機變焦鏡頭進行光學優化設計,旨在提升光 學變焦性能、降低鏡頭模組厚度,並提出混合式(結合被動式與主動 式)熱補償改善環境溫度對光學性能的影響。研究包含三個延續性設 計:(1)第一設計為十倍變焦、九百萬畫素的潛望式鏡頭,鏡頭深度控 制在5 mm 以內,並進行相對照度之驗證;(2)第二設計是基於第一設 計,透過混合式熱補償進行溫度分析及優化;(3)第三設計延續第二設 計,將平面感測器更換為曲面感測器,進一步優化溫度分析與熱補償。 本研究三個設計均達成鏡頭深度小於5 mm 的關鍵目標,並在各 變焦段與視場下滿足光學品質要求;此外,於第一設計中,完整呈現 相對照度的推導及驗證,結果與市售軟體(CODE V)數據相近;在第 二設計中,導入混合式熱補償機制,顯著提升溫度穩定性;在第三設 計中,運用曲面感測器進一步優化其系統的溫度適應性,其整體光學 性能及穩定度最好。針對第二、三設計另就-20°C 和60°C 兩個極端 溫度進行主動式熱補償,結果證實本研究除鏡頭深度與光學性能均能 滿足設計目標外,亦展現優異的溫度穩定性。;This study presents an optical optimization design of a periscope-type smartphone zoom lens, targeting enhanced optical zoom performance, reduced lens module thickness, and improved thermal stability through a hybrid (passive-active) thermal compensation approach. The research consists of three sequential designs: (1) The first design is a 10 × , 9-megapixel periscope lens with a lens depth controlled within 5 mm, including verification of relative illumination; (2) The second design builds upon the first, incorporating hybrid thermal compensation for temperature analysis and optimization; (3) The third design extends the second by replacing the flat sensor with a curved sensor, further optimizing temperature analysis and thermal compensation. All designs achieve the fundamental requirement of < 5mm lens depth while meeting all imaging performance criteria across all zoom positions and fields of view. The first design presents full derivation and validation of relative illumination, closely matching commercial software (CODE V) data. The second design significantly improves thermal stability with hybrid thermal compensation. The third design enhances thermal adaptability and optical performance using a curved sensor. Active thermal compensation at -20°C and 60°C in the second and third designs confirms the excellent thermal stability alongside optical and structural design goals.