中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98220
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 61049189      Online Users : 429
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98220


    Title: 智慧客服工單分類的應用研究;A Study on the Application of Intelligent Customer Service Ticket Classification
    Authors: 林煜烽;Lin, Yu-Feng
    Contributors: 資訊管理學系在職專班
    Keywords: 人工智慧;智慧客服;自然語言處理;BERT;工單分類;文本分類;深度學習;語意理解;自動化客服
    Date: 2025-06-25
    Issue Date: 2025-10-17 12:30:40 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究聚焦於人工智慧(AI)在智慧客服系統中的應用,旨在開發一套能自動分類客服工單的深度學習模型,藉此提升企業在客服作業流程中的效率與準確性。隨著數位轉型加速,以及自然語言處理(NLP)技術的快速發展,傳統仰賴人工進行工單分類的方式已難以滿足高效率、低成本與高準確度的實務需求,特別是在面對短文本、語意模糊與語言多樣性等挑戰時,更顯不足。
    本研究採用 BERT、RoBERTa、BART 等預訓練語言模型作為基礎,導入 Fine-Tuning 機制進行模型微調,並以實際企業客服資料進行訓練與測試,建立「客服工單分類器(CSTC)」模型系列。實驗評估包含分類準確率、精確率、召回率與 F1-score 等指標,並進行消融實驗與不同模型間的比較,以驗證模型效能。各類深度語言模型皆能有效處理非結構化、短篇幅的客服敘述文本,展現優異的語境理解與分類能力。針對實際部署的可行性提出建議,包括分詞器策略、學習率敏感度、Batch Size、Dropout 設定等參數優化方式,提供企業導入智慧工單分類模組的實務參考。
    本研究不僅建立了可行的智慧客服分類解決方案,更實證其在真實企業資料中的應用潛力,有助於企業降低人力成本、提升客戶滿意度與服務反應速度,對於推動客服系統智慧化與自動化具有高度實用價值與參考意義。
    ;This study explores the application of artificial intelligence in smart customer service systems, with a particular focus on the automatic classification of customer support tickets. As digital transformation accelerates and natural language processing (NLP) technologies advance, traditional manual ticket classification methods can no longer meet the demands for efficiency and precision. In this research, we fine-tune pre-trained language models such as BERT, RoBERTa, and BART to build multiple classification models, which are evaluated using real-world customer service datasets. Key performance metrics include accuracy, precision, recall, and F1-score. The results demonstrate that these deep learning models effectively understand short texts and ambiguous semantics, significantly improving classification accuracy and operational efficiency. Furthermore, the study analyzes the adaptability and scalability of different models in handling linguistic variation and data imbalance. Practical recommendations are provided for deploying these models in real-world enterprise environments. Overall, this research contributes to enhancing the level of automation in customer service operations, reducing labor costs, and improving customer satisfaction and response speed. The findings serve as a practical reference for the implementation and development of intelligent customer service systems in industry contexts.
    Appears in Collections:[Executive Master of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML46View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明