中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/9864
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 48288750      Online Users : 23
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/9864


    Title: 應用海伯理論來改善非結構式社群同儕網路之搜尋效能;Applying Hebbian theory to improve searching performance in unstructured social-like P2P Networks
    Authors: 林建均;Lin Jianjun
    Contributors: 資訊工程研究所
    Keywords: 同儕網路;社群式同儕網路;語意相似度;social-like P2P Network;P2P Network;semantic similarity
    Date: 2009-06-24
    Issue Date: 2009-09-22 11:58:16 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 為了在同儕網路中要達成搜尋有效性及準確性,因此發展了社群式同儕網路這類新興的技術。從目前相關的社群式同儕網路研究中,本研究發現這些社群式同儕網路的確改善非結構式同儕網路搜尋效率低落的問題。然而,從過去研究者提升非結構式同儕網路搜尋效率的角度來觀察社群式同儕網路,本研究發現有3點因素是影響社群式同儕網路的搜尋效率。1.記錄正確回應節點問題,2.支援語意搜尋問題,3. 維護節點列表問題。因此,本研究發展出一種「社群關聯式同儕網路」,它是利用海伯法(Hebbian Rule)來設計社群式關聯程度機制,這個社群式關聯程度機制就是讓節點與節點之間所形成的人際互動都有權重值。它的重要特色除了達到讓正確回應問題的節點能夠獲得與詢問節點較高的權重值外,還增加了機器學習的能力,讓每一個節點可以在搜尋過後會調整其權重值以增進搜尋效率。 In order to improve search performance and accuracy, social-like P2P Networks are developed in last years. Our research discover that these methods in social-like P2P Networks can improve search performance in unstructured P2P Networks. However, We find there are three factors that can influence search performance in social-like P2P Networks. First, how to record the peers which have positive response. Second, how to calculate semantic similarity for searching. And third, how to maintain the peer profile. We use Hebbian rule to design the mechanism for calculate the associated weights of peers when they have social interactions, called ‘Associated social-like P2P Networks’. The distinguishing features for improving search performance are the peers with correct responses have higher weights, and adjust the weights by the ability of learning after searching.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明