博碩士論文 973202065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.17.61.107
姓名 彭建穎(Chien-ying Peng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 樹液流速之實驗研究
(Laboratory Experiments on Transient Response of Sap Flow)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用Granier熱消散探針探討環境參數(譬如風速、太陽輻射量、土壤含水量和蒸氣壓差)如何影響兩種植物:馬拉巴栗(Pachira macrocarpa)和白水木(Messerschmidia argentea)的樹液流速。風速實驗和輻射量實驗的結果顯示不同樹種樹液的動態反應皆可以使用Phillips et al. (2004)中電阻-電容模式來描述,且樹液流速的穩態值Vs和時間常數Tc與探針的量測位置有關,馬拉巴栗主幹上位置較低(10 cm)樹液的時間常數小於較高(47 cm)位置的時間常數,而探針位置較低的樹液流速穩態值會大於較高探針的穩態值。此外,在相同風速下,實驗結果顯示土壤含水量在未飽和狀態下的樹液流速會低於飽和土壤含水量的樹液流速,但是在未飽和土壤及飽和土壤中的樹液流速的時間常數大致相同。此外,樹枝自主性實驗發現枝幹的樹液流速對外界環境的改變各自獨立,但主幹的樹液流速一定會受到外界環境參數改變的影響。
摘要(英) It is well know that plant transpiration and sap flow are influenced by the environmental parameters, such as wind, solar radiation, soil moisture, vapor pressure deficit and temperature. This study used the Granier-type heat dissipation sensors to investigate the transient response of sap flow on two plant species: Pachira macrocarpa and Messerschmidia argentea (L.). The results of wind speed and blackout experiments revealed that the transient responses of sap flow of these two plants could be described by the resistance-capacitance model of Phillips et al. (2004). But the time constant and steady sap flow velocity were dependent on the location on the sensors. For Pachira macrocarpa, the time constant Tc of lower height on the stem is smaller than that of higher height, and the steady sap flow velocity Vs at lower height is larger than that of higher height. It was also found that under the same wind speed, the sap flow velocity of plant in under-saturated soil is smaller than that of in saturated soil, but the time constants of well-watered plant and plant in under-saturated soil are about the same. The experimental results of branch autonomy demonstrated that the branches react independently to the change of environmental parameter.
關鍵字(中) ★ 樹枝自主性
★ 光合作用輻射
★ 土壤含水量
★ 風速
★ 樹液流速
關鍵字(英) ★ Branch autonomy
★ Photosynthetically active radiation
★ Soil moisture
★ Wind
★ Sap flow
論文目次 Abstract I
Contents III
Notation IV
Figure captions V
Table captions VIII
1. Introduction 1
2. Experimental setup 5
3. Results and discussion 9
3.1 Wind speed experiments 9
3.2 Soil moisture experiments 12
3.3 Blackout experiments 13
3.4 Branch autonomy experiments 15
3.5 Radiation experiments 16
4. Conclusions 17
References 19
Tables 20
Figures 28
Appendix I 63
Appendix II 70
參考文獻 Chu C.R., Hsieh C.I., Wu S.Y., Phillips N.G. 2009. Transient response of sap flow to wind speed. Journal of Experimental Botany, 60 (1), 249-255.
Gibert D., Mouël Jean-Louis L., Lambs L., Nicollin F., Perrier F. 2006. Sap flow and daily electric potential variations in a tree trunk. Plant Science, 171, 572-584.
Granier A. 1985. Une nouvelle me'thode pour la mesure du flux de se`ve brute dans le tronc des arbres. Annales des Sciences Forestieres, 42, 193-200.
Granier A. 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap-flow measurements. Tree Physiology, 3, 309-320.
Hunt E.R. and Nobel, P.S. 1987. Non-steady-state water flow for three desert perennials with different capacitances. Australian Journal of Plant Physiology, 14, 363-375.
Jones H.G. 1992. Plants and Microclimate: A quantitative approach to environmental plant physiology. Cambridge University Press, pp. 428.
Phillips N.G., Nagchaudhuri A., Oren R., Katul G. 1997. Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow, Trees – Structure and Function, 11, 412-419.
Phillips N.G., Oren R., Licata J., Linder S. 2004. Time series diagnosis of tree hydraulic characteristics, Tree Physiology, 24, 879-890.
Sprugel D.G., Hinckley T.M., Scgaap W. 1991. The theory and practice of branch autonomy, Annual Review of Ecol. System, 22, 309-334.
Steppe K., Lemeur R., Samson R. 2002. Sap flow dynamics of a beech tree during the solar eclipse of 11 August 1999, Agricultural and Forest Meteorology, 112, 139-149.
Wilson K.B., Hanson P.J., Mulholland P.J., Baldocchi D.D. Wullschleger S.D. 2006. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water, Agricultural and Forest Meteorology, 106, 153-168.
Wu S.Y. 2008. Use sap flow sensor to investigate the influence of environmental parameters on plant transpiration, M.S. Thesis of Department of Civil Engineering, National Central University (in Chinese).
Wullschleger S.D., Meinzer F.C., Vertessy R.A. 1998. A review of whole plant water use studies in trees, Tree Physiology, 18, 499-512.
指導教授 朱佳仁(Chia-Ren Chu) 審核日期 2010-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明