博碩士論文 943402001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.137.208.89
姓名 李璟芳(Ching-Fang Lee)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 邊界條件與材料組成對顆粒流堆積型態及流動特性之效應
(The effects of boundary conditions and material properties on the dynamic characteristics and deposition patterns for granular flows)
相關論文
★ 不均勻圓形橋墩之局部沖刷研究★ 砂礫河床之跌水沖刷分析
★ 土石流潛勢判定模式及土石壩滲流破壞之研究★ 港池污染擴散影響因子之探討
★ 不均勻橋墩及群樁基礎之局部沖刷研究★ 邊牆射流及尾檻對砂質底床之沖刷研究
★ 砂粒受水平振動行為之研究★ 土石流發生之水文特性探討
★ 不均勻橋墩與套環保護工法之局部沖刷研究★ 護坦及尾檻下游之局部沖刷分析
★ 橋台束縮與局部沖刷之研究★ 慢顆粒流之輸送帶實驗與影像分析
★ 均勻入滲時坡面地下水流之理論解析★ 尾檻設置對下游之局部沖刷效應
★ 二維斜坡顆粒流之輸送帶實驗與分析★ 斜坡土體滲流破壞引致土石流之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對礫石型土石流、坡地崩塌、落石崩落與工業製造而言,顆粒體的流動及力學特性在實際應用上扮演了重要的角色。為了暸解顆粒流的物理特徵與動力學機制,本研究以實驗方式探討了均勻顆粒物質的巨觀流動行為、混合顆粒之粒徑分離、重力崩落過程與顆粒坡面受水平震動之遞減行為。實驗採用Voronoi細胞為基礎之流動粒子影像法配合理論進行研析。
在旋轉滾筒內的均勻顆粒流中,本研究提出了一個涵蓋了福祿數、相對粒徑與填充率的無因次流量,其可量化流動層中的動態安息角、流動厚度、表面流速以及剪切率。在混合顆粒的旋轉滾筒流動中,實驗分析顯示增加邊壁粗糙度將造成新的軸向流動型態:粗細顆粒完全分離的非對稱帶。而造成軸向分離的粒徑比、幾何尺度與邊壁摩擦等特性也進一步地被討論。在流動軌跡與速度場之分析上,本研究發現固定的邊壁摩擦條件下,軸向對流胞將隨福祿數提高而逐漸擴大。另外結合Péclet數與邊壁粗糙度的尺度定律分析,顯示了藉由改變不同的控制參數可誘發相同的軸向分離現象。
落石崩塌及坡面滑動的崩落歷程與顆粒物理息息相關。對於已知的顆粒粒徑與底床坡度,實驗崩落坡面的退縮歷程變化與本研究所提出之理論曲線相符,其無因次流動長度將隨著無因次時間增加而遞減。暫態的顆粒流動速度量測顯示在接近靜態的底部區域,其剖面為遵循超穩態流變學(SSH)之指數分布,而非Bagnold流變學之範疇。在水平震動的坡面破壞實驗中,本文所提之指數遞減模式可良好地描述表面坡角於非拘限與拘限邊界的遞減歷程,同時反映不同相對加速度、顆粒表面粗糙度與尾檻高度之差異。另外顆粒堆積內部的流體化厚度與最終穩定坡角則顯示了渠寬縮減後的邊壁效應。最後,兩個相異邊壁條件下所引起的不同坡面破壞機制也將進一步被驗證與探討。
摘要(英) Granular flows always play an important role on the flow dynamics and application for both natural phenomena such as stony debris flows, slope avalanches, and rock falls in field and industrial manufactory. In order to understand the physical characteristics and dynamic mechanism in granular flows, this study explores the macroscopic flow characteristic of uniform granular material, size segregation of binary mixture, falling processing induced by gravity, and slope angle decay under horizontal shaking by experimental investigations. Both experimental analyses with digital imaging techniques based on Voronoi velocimetry algorithm and theoretical description are employed in the study.
With regard to the granular flow composed of uniform grains in a rotating drum, a new dimensionless flow rate combining the effects of Froude number, relative particle size and volume filling is proposed in this study, which controls the flow characteristics in a rational drum such as dynamic angle of repose, thickness of the flowing layer, relative free surface velocity, and the shear rates in the flowing layer. For a binary mixture of granular material, the experiments demonstrate the enhancement of side-wall friction will cause a new pattern: the asymmetrical banding stripe. The onset of axial segregation in connection with the variations of size ratio of mixtures, drum geometry, and wall friction are also verified. From trajectory reconstructions and velocity field, one can conclude that the lateral convective cell will expand gradually while Froude number increases for a constant wall friction case. By means of the corresponding scaling law combining the terms of Péclet number and wall roughness, the same axial segregation can be obtained by changing the different control factors.
On the other hand, the falling processes associated with rock avalanches and the sliding of slopes is closely related to the granular physics. With respect to a given size of particles and bottom slope, the retreating upper granular surface follows the presented theoretical curve, and dimensionless mobile length decreases as the dimensionless time parameter increases. Measurements of transient velocity profiles exhibit an exponential-like tail close to the static region at the quasi-static bottom and obey SSH rheology instead of Bagnold’s rheology. As for the slope angle decay in the confined and unconfined boundary under shaking process, the proposed scaling law can be well described the evolution of surface slope angle and reflects the variation among the relative shaking acceleration, surface roughness of grains, and sill height. In addition, the corresponding thickness of internal fluidized layer and final stable slope angle show the important relationship linking to the existence of side-wall effect. Finally, the different types of slope failure mechanisms of these two experiments are also examined and discussed further.
關鍵字(中) ★ 邊壁效應
★ 坡角遞減
★ 質點追蹤速度計
★ 顆粒流
★ 粒徑分離
★ 重力崩落
關鍵字(英) ★ particle tracking velocimetry
★ granular flows
論文目次 中文摘要 I
ABSTRACT III
致謝 IV
TABLE OF CONTENTS V
LIST OF FIGURES IX
LISTS OF TABLES XXIII
NOTATION XXIV
CHAPTER 1. OVERVIEW OF GRANULAR FLOWS 1
1-1. Introduction 1
1-2. Flowing dynamics and complex behavior 3
1-2-1. Properties of material 3
1-2-2. Geophysical flows 8
1-2-3. Flowing patterns 11
1-3. Theoretical development 18
1-3-1. Velocity description 18
1-3-2. Rheology of granular flows 23
1-4. Motivations of research 29
1-5. Expermental Measurement 34
CHAPTER 2. CROSS-SECTIONAL AND AXIAL FLOW CHARACTERISTICS OF DRY GRANULAR MATERIAL IN ROTATING DRUMS 41
2-1. Introduction 41
2-2. Experimental apparatus and procedures 43
2-2-1. Experimental apparatus 43
2-2-2.Image measurements 45
2-2-3. Velocity distribution model 48
2-2-4. Parametric study 51
2-2-5. Cross-sectional and axial surface profile 53
2-3. Results and discussions 55
2-3-1. Cross-sectional flowing properties 56
2-3-2. Axial flowing properties 69
2-3-3. Effects of side-wall friction 82
2-4. Summary 85
CHAPTER 3. EXPERIMENTAL STUDY ON GRANULAR SEGREGATION IN ROTATIONAL DRUMS 87
3-1. Introduction 87
3-2. Apparatus and experimental method 89
3-3. Results and discussion 93
3-3-1. Segregation in symmetrical friction drums 93
3-3-2. Segregation in asymmetrical friction drums 98
3-3-3. Local rheology on axial segregation 119
3-3-4. segregation induced by side wall frictions 121
3-4. Summary 129
CHAPTER 4. FALLING PROCESS OF A RECTANGULAR STEP 131
4-1. Introduction 131
4-2. Experimental setup 132
4-3. Results and discussions 135
4-3-1. Description of the flow phenomenon 135
4-3-2. Scaling law for the retreating upper granular surface 139
4-3-3. Effect of side walls 141
4-3-4. Transient density and velocity profiles 142
4-3-5. Characteristic velocity and flow depth for the transient flow 152
4-4. Summary 155
CHAPTER 5. ON THE MECHANISMS AND PROCESSES OF GRANULAR SLOPE COLLASPES DRIVEN BY SEISMIC FORCINGS 157
5-1. Introduction 157
5-2. Experimental apparatus and material 161
5-3. Theoretical description 163
5-3-1. Mechanism of seismic sliding 163
5-3-2. Scaling law of s slope relaxation 165
5-4. Flow behavior in active and passive states 167
5-5. The avalanching under confined boundary 173
5-5-1. Variations of surface angle decay 174
5-5-2. Effect of side walls 183
5-5-3. Particle trajectory and velocity field 185
5-5-4. Internal packing 190
5-6. Unconfined boundary avalanching 195
5-6-1. Variations of surface angle decay 196
5-6-2. Avalanching deposition 204
5-6-3. Particle trajectory and velocity field 209
5-7. Failure mechanism 212
5-8. Summary 218
CHAPTER 6. CONCLUSIONS 219
BIBLIOGRAPHY 225
參考文獻 1. Albert, R., Albert, I., Hornbaker D., Schiffer P., and Baraba´si A, L. “Maximum angle of stability in wet and dry spherical granular media.” Physical Review E, 56(6), 6271-6274 (1997)
2. Alexander, A., Shinbrot, T., and Muzzio, F. J. “Scaling surface velocities in rotating cylinders as a function of vessel radius, rotation rate, and particle size.” Powder Technology, 126(2), 174-190 (2002)
3. Alexander, A., Muzzio, F. J., and Shinbrot, T., “Effects of scale and inertia on granular banding segregation.” Granular Matter, 5, 171-175 (2004)
4. Aranson, I. S., Tsimring, L. S., and Vinokur, V. M.., “Continuum theory of axial segregation in a long rotating drum” Physical Review E, 60(2), 1975-1987 (1999)
5. Aranson, I. S. and Tsimring, L. S., “Patterns and collective behavior in granular media: Theoretical concepts” Reviews of Modern Physics, 78, 641-687 (2006)
6. Armanini, A., Capart, H., Fraccarollo, L., and Larcher, M. “Rheological stratification in experimental free-surface flows of granular-liquid mixtures” Journal of Fluid Mechanics, 532, 269-319 (2005)
7. Aste, T., Matteo, T. D., and Tordesillas, A. “Granular and complex materials” World Scientific Publishing Co. Singapore (2007).
8. Bagnold, R. A. “Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear” Proceedings of the Royal Society, 225, 49-63 (1954)
9. Bak, P., Tang, C., and Wiesenfeld, K. “Self-organized criticality” Physical Review A, 38(1) 364-374 (1988)
10. Balmforth, N. J. and Kerswell, R. R. “Granular collapses in two dimensions” Journal of Fluid Mechanics, 38, 399-428 (2005)
11. Banks, M, Bridges, N. T, and Benzit, M. “Measurements of the coefficient of restitution of quartz sand on basalt: Implications for abrasion rates on Earth and Mars.” 36th Annual Lunar and Planetary Science Conference, March 14-18, 2005, in League City, Texas, USA (2005)
12. Baran, O. and Kondic, L. “Velocity profiles, stresses and Bagnold scaling of sheared granular system in zero gravity” Physics of Fluids, 17, 073304 (2005)
13. Bertrand, F., Leclaire, L. A., and Levecque, G. “DEM-based models for the mixing of granular materials” Chemical Engineering Science, 60, 2517-2531 (2005)
14. Bi, W., Delannay, R., Richard, P., Taberlet, N., and Alexandre. V. “Two-and three dimensional confined granular chute flows: experimental and numerical results” Journal of Physics: Condensed Matter, 17, 2457-2480 (2005).
15. Bielenberg, J. R., Gladysz, G. M., and Graham, A. L. “Aparametric study of axial segregation in granular systems” Chemical Engineering Science, 62, 4177-4181 (2007)
16. Birman,V. K., Meiburg, E., and Kneller, B. “The shape of submarine levées: exponential or power law? ” Journal of Fluid Mechanics, 619, 367-376 (2009)
17. Blair, T. C. and McPherson J. G. “Recent debris-flow processes and resultant form and facies of the Dolomite alluvial fan, Owens Valley, California” Journal of Sedimentary Research, 68(5) 800-818 (1998)
18. Boateng, A. A. and Barr, P. V. “Granular flow behaviour in the transverse plane of a partially filled rotating cylinder” Journal of Fluid Mechanics, 330, 233-249 (1997)
19. Boateng, A. A. “Boundary layer modeling of granular flow in the transverse plane of a partially filled rotating cylinder” International Journal of Multiphase Flow, 24(3), 499-521 (1997)
20. Bocquet, L., Charlaix, É., Ciliberto, S., and Crassous, J. “Moisture-induced ageing in granularmediaandthekinetics of capillary condensation” Nature, 396, 735-737 (1998)
21. Bocquet L., Charlaix, É., and Restagno, F. “Physics of humid granular media” Comptes Rendus Physique, 3, 207-215 (2002)
22. Bonamy, D., Daviaud, F., and Laurent, L. “Experimental study of granular surface flows via a fast camera: a continuous description” Physics of Fluids, 14, 1666 (2002).
23. Bouchaud, J. P., Claudin, P., Levine, D., and Otto, M. “Force chain splitting in granular materials: A mechanism for large-scale pseudo-elastic behavior” The European Physical Journal E: Soft Matter and Biological Physics, 4(4), 451-457 (2001)
24. Breu, A. P. J., Ensner, H.-M., Kruelle, C. A., and Rehberg, I. “Reversing the Brazil-Nut Effect: Competition between Percolation and Condensation.” Physical Review Letter, 90(1), 14302 (2003)
25. Brewster, R., Grest, G. S., Landry, J. W., and Levine, A. J. “Plug flow and the breakdown of Bagnold scaling in cohesive granular flows.” Physical Review E, 72, 061301 (2005)
26. Bui, H. H., Fukagawa, R., Sako, K., and Wells, J. C. “Numerical simulation of granular materials based on smoothed particle hydrodynamics (SPH).” Powders and Grains 2009: Proceedings of the 6th international conference on micromechanics of granular media. 1145 575-578 (2009)
27. Bursik, M., Patra, A., Pitman, E. B., Nichita, C., Macias, J. L., Saucedo, R., and Girina, O. “Advances in studies of dense volcanic granular flows.” Reports on Progress in Physics, 68, 271-301 (2005)
28. Campbell, C. S. “Granular material flows-An overview.” Powder Technology 162, 208-229 (2006)
29. Capart, H., Young, D. L., and Zech, Y. “Voronoï imaging methods for the measurement of granular flows.” Experiments in Fluids. 32(121), 121-135 (2002)
30. Caponeri, M., Douady, S., Fauve, S., and Laroche, C. “Dynamics of avalanches in a rotating cylinder. Mobile particulate systems.” Kluwer Academic, Netherlands, 350 (1995)
31. Charles, C. R. J., Khan, Z. S., and Morris, S. W. “Pattern scaling in axial segregation. How does the wavelength of axial segregation scale with the tube diameter?” Granular Matter, 6, 1-3 (2006)
32. Cawthorn, C. J.: “A constitutive law for granular flows: Predicting the appearance of static zones.” Smith-Knight/Rayleigh-Knight Essay. (2008)
33. Chou, H. T. and Chang, Y. Y. “Relaxation of angle of repose for three dimensional granular material under Horizontal Vibrations.” Journal of Mechanics B, 16(2), 153-160 (2000) (in Chinese)
34. Chou, H. T. and Chang, Y. Y. “Relaxation of angle of repose for three dimensionless granular material under horizontal vibrations.” Journal of the Chinese Institute of Civil and Hydraulic Engineering, 16(1), 145-154 (2004) (in Chinese)
35. Chou, H. T. and Lee, C. F. “Collapsing process of uniform granular slopes.” Powders and Grains 2009, Proceedings of the 6th International Conference on Micromechanics of Granular Media, 601-604 (2009)
36. Clement, E., Rajchenbach, J., and Duran, J. “Mixing of a granular material in a bidimensional rotating drum.” Europhysics Letters, 30, 7-12 (1995)
37. Corominas, J. “Evidence of basal erosion and shearing as mechanisms contributing the development of lateral ridges in mudslides, flow-slides, and other flow-like gravitational movements.” Engineering Geology, 39, 45-70(1995)
38. Cruz, F. D., Eman, S., Prochnow, M., Roux, J. N., and Chevoir, F. “Rheophysics of dense granular materials: Discrete simulation of plane shear flows.” Physical Review E, 72. 021309-1-17 (2005)
39. Dahl, V. P. and Hermansson, R. “Study of the phenomena affecting the accuracy of a video-based particle tracking velocimetry technique.” Experiments in Fluids, 22, 482-488 (1997)
40. Debayle, J., Raihane, A., Belhaoua, A., Bonnefoy, O., Thomas, G., Chaix, J.M., and Pinoli, J.C. “Velocity field computation in vibrated granular media using an optical flow based multiscale image analysis method.” Image Analysis and Stereology, 28, 35-43 (2009).
41. Deboeuf, S., Lajeunesse, E., Dauchot, O., and Andreotti, B. “Flow Rule, Self-Channelization, and Levées in Unconfined Granular Flows.” Physical Review Letter, 97, 158303 (2006)
42. Decaulne, A. and Saemundsson, T. “Geomorphic evidence for present-day snow-avalanche and debris-flow impact in the Icelandic Westfjords.” Geomorphology, 80, 80-93(2006)
43. Denniston, C. and Li, Hao. “Dynamics and stress in gravity-driven granular flow.” PHYSICAL REVIEW E, 59(3), 3289-3292 (1999)
44. Ding, Y. L., Forster, R. N., Seville, J. P. K., and Parker, D. J. “Granular motion in rotating drums: bed turnover time and slumping-rolling transition.” Powder Technology, 124(1), 18-27 (2002)
45. Donald, M. B. and Roseman, B. “Mixing and demixing of solid particles. Part 1. Mechanisms in a horizontal drum mixer.” Chemical Engineering, 7, 749 (1962)
46. Doyle, E. E., Huppert, H. E., Lube, G. G., Mader, H. M., and Sparks, R. S. J. “Static and flowing regions in granular column collapses down channels: Insights from a sedimenting shallow water model.” Physics of Fluids, 19, 1-16 (2007)
47. Duran, J., Rajchenbach, J., and Clément, E. “Arching effect model for particle size segregation.” Physical Review Letter, 70, 2431-2434 (1993)
48. du Pont, S. C., Fischer, R., Gondret, P., Perrin, B., and Rabaud, M. “Wall effects on granular heap stability.” Europhysics Letters, 61(4)492-498 (2003)
49. du Pont, S. C., Fischer, R., Gondret, P., Perrin, B., and Rabaud, M. “Instantaneous Velocity Profiles during Granular Avalanches.” Physical Review Letter, 94, 048003 (2005)
50. Eggers, J. “Sand as Maxwell’s Demon.” Physical Review Letter, 82(25), 5322-5325 (1999)
51. Elperin, T. and Vikhansky, A. “Mechanism of the onset of axial segregation in a rotating cylindrical drum filled with binary granular mixtures.” Physical Review E, 60, 1946-1950 (1999)
52. Elperin, T., Vikhansky, A. “Granular flow in a three-dimensional rotating container.” Physical Review E. 62(3), 4446-4449 (2000)
53. Erismann, T. and Abele, G. “Dynamics of rockslides and rockfalls.” Springer, Berlin Heidelberg New York (2001)
54. Evesque, P. and Rajchenbach, J. “Instability in a sand heap.” Physical Review Letter. 62, 44-46 (1989)
55. Felix, G. and Thomas, N. “Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits.” Earth and Planetary Science Letters, 221, 197-213 (2004)
56. Felix, G., Falk, V., and D’Ortona, U. “Granular flows in a rotating drum: the scaling law between velocity and thickness of the flow.” European Physical Journal E, 221, 197-213 (2007)
57. Finger, T. Voigt, A. Stadler, J. Niessen, H. G. Naji, L., and Stannarius R., “Coasrening of axial segregation patterns of slurries in a horizontally rotating drum.” Physical Review Letter, 74, 031312 (2006)
58. Forterre, Y. and Pouliquen, O. “Longitudinal Vortices in Granular Flows.” Physical Review Letter, 86, 5886-5889 (2001)
59. Forterre, Y. and Pouliquen, O. “Flows of dense granular media.” Annual Review of Fluid Mechanics, 40, 1-24 (2008)
60. Fraccarollo, L., Larcher, M., and Armanini, A. “Depth-averages relations for granular-Liquid uniform flows over mobile bed in a wide range of slope values.” Granular Matter, 9, 145-157 (2007)
61. Friedmann, S. J., Taberlet, A. N., and Losert A. W. “Rock-avalanche dynamics: insights from granular physics experiments.” International Journal of Earth Sciences, 95, 911-919 (2006)
62. GDR MiDi. “On dense granular flow.” European Physical Journal E, 14(14), 341-365 (2004)
63. Geng, J., Howell, D., Longhi, E., Behringer, R. P., Reydellet, G., Vanel, L., Clément, E., and Luding, S. “Footprints in sand: the response of a granular material to local perturbations.” Physical Review Letter, 87, 035506 (2001)
64. Grasselli, Y. and Herrmann, H. J. “On the angles of dry granular heaps.” Physica A, 246, 301-312 (1997)
65. Grochowski, R., Walzel, P., Rouijaa, M., Kruelle, C. A., and Rehberg, I. “Reversing granular flow on a vibratory conveyor.” Applied Physics Letters, 84(6), 1019-1021 (2004)
66. Gupta, S. D. Khakhar, D. V., and Bhatia, S. K., “Axial segregation of particles in a horizontal rotating cylinder.” Chemical Engineering Science, 46(5), 1513-1517 (1991)
67. Halsey, T. C and Mehta, A. “Challenges in granular physics.” World Scientific Publishing Co. (2002)
68. Henein, H., Brimacombe, J. K., and Watkinson, A. P. “Experimental study of transverse bed motion in rotary kilns.” Metallurgical Transactions, 14(2), 191-205 (1983)
69. Herminghaus, S. “Dynamics of wet granular matter.” Advances in Physics, 54, 1-24 (2005)
70. Hidalgo, R. C., Grosse, C. U., Kun, F., Reinhardt, H. W., and Herrmann, H. J. “Evolution of Percolating Force Chains in Compressed Granular Media.” Physical Review Letter, 89, 205501 (2002)
71. Hill, K. M. and Kakalios, J. “Reversible axial segregation of rotating granular media.” Physical Review E, 52(4), 4393-4400 (1995)
72. Hill, K. M., Caprihan, A., and Kakalios, J., “Axial segregation of Pattern evolution.” Physical Review E, 56(4), granular media rotated in a drum mixer: 4386-4393 (1997)
73. Hsu, L., Dietrich,W. E., and Sklar, L. S. “Experimental study of bedrock erosion by granular flows.” Journal of Geophysical Research, 113, 1-21 (2008)
74. Ichii, K and Ohmi, H. “Slope stability of cohesionless material under large seismic shakings.” 11th International Conference on Soil Dynamics and Earthquake Engineering and the 3rd International Conference on Earthquake Geotechnical Engineering Proceedings, 2(2), 388-395 (2004).
75. Iverson, R. M. “The physics of debris flows.” Reviews of Geophysics, 35, 245-296 (1997)
76. Iverson, R. M. and Vallance, J. W. “New views of granular mass flows.” Geology, 29(2), 115-118 (2001)
77. Jaeger, H. M., Liu, C., and Nagel, S. R. “Relaxation at the angle of repose.” Physical Review Letter, 62, 40-43 (1989).
78. Jaeger, H. M. and Nagel, S. R. “Physics of the granular state.” Science, 255, 1523-1531 (1992)
79. Jaeger, H. M., Nagel, S. R., and Behringer, R. P. “The physics of granular materials.” Physics Today, 32-38. (1996)
80. Jain, N., Ottino, J. M., and Lueptow, R. M. “An experimental study of the flowing granular layer in a rotating tumbler.” Physics of Fluids, 14, 572-582 (2002).
81. Jakob, M. and Hungr, O. “Debris-flow Hazards and related phenomena.” Springer, Praxis Publishing, Chichester, UK (2005).
82. Janssen, H. A. “Experiments on grain pressures in silos.” Versuche über Getreidedruck in Silozellen. Verein Deutscher Ingenieure, Zeitschrift (Dusseldorf), 39, 1045-1049 (1985)
83. Jop, P., Forterre, Y., and Pouliquen, O. “Crucial role of sidewalls in granular surface flows: consequences for the rheology.” Journal of Fluid Mechanics, 541, 167-192 (2005)
84. Jop, P., Forterre, Y., and Pouliquen, O. “A constitutive law for dense granular flows.” Nature, 441, 727 30 (2006)
85. Jop, P., Forterre, Y., and Pouliquen, O. “Initiation of granular surface flows in a narrow channel.” Physics of Fluids, 19, 088102-1-4 (2007)
86. Josserand, C., Lagrée, P. Y., Lhuillier, D., Popinet, S., Ray, P., and Staron, L. “The spreading of a granular column from a Bingham point of view.” Powders and Grains 2009, Proceedings of the 6th International Conference on Micromechanics of Granular Media. 631-634 (2009)
87. Katz, O. and Aharonov, E. “Landslides in vibrating sand box: What controls types of slope failure and frequency magnitude relations?” Earth and Planetary Science Letters, 247 , 280-294 (2006)
88. Khakhar, D. V. and Orpe, A. V. “Surface granular flows: Two related examples.” Advances in Complex Systems, 4(4), 407-503 (2001)
89. Knight, J. B., Jaeger, H. M., and Nagel, S. R. “Vibration-induced size separation in granular media: The convection connection.” Phys. Rev. Lett. 70, 3728-3731 (1993)
90. Komatsu, T. S., Inagaki, S., Nakagawa, N., and Nasuno, S. “Creep motion in a granular pile exhibiting steady surface flow.” Physical Review Letter, 86, 1757-1760 (2001).
91. Kudrolli, A. “Size separation in vibrated granular matter.” Reports on Progress in Physics, 67, 209-247 (2004)
92. Kuo, H. P., Hsu, R. C., and Hsiao, Y. C. “Investigation of axial segregation in a rotating drum.” Powder Technology, 153, 196-203 (2005)
93. Kuo, H. P., Hsiao, Y. C., and Shih, P. Y. “A study of the axial segregation in a rotating drum using deformable particles.” Powder Technology, 166, 161-166 (2006)
94. Kuo, C. Y., Tai, Y. C., Bouchut, F., Mangeney, A., Pelanti M., Che, R. F., and Chang, K. J. “Simulation of Tsaoling landslide, Taiwan, based on Saint Venant equations over general topography.” Engineering Geology 104, 181-189 (2009)
95. Lachamp, P., Faug, T., Naaim, M., and Laigle, D. “Simulation of the effect of defence structures on granular flows using SPH.” Natural Hazards and Earth System Sciences 2 203-209 (2002)
96. Lajeunesse, E., Mangeney-Castelnau, A., and Vilotte, J. P. “Spreading of a granular mass on a horizontal plane.” Phys. Fluids 16, 2371-2381 (2004)
97. Lajeunesse, E., Monnier, J. B., and Homsy, M. “Granular slumping on a horizontal surface.” Physics of Fluid, 17, 1033021-15 (2005)
98. Lee, Y. S. L., Poynter, R., Podczeck, F., and Newton J. M. “Development of a dual approach to assess powder flow from avalanching behavior.” AAPS PharmSciTech, 1(3), 44-52 (2000)
99. Liu, X., Specht, Y., and Mellmann, E. J. “Experimental study of the lower and upper angles of repose of granular materials in rotating drums.” Powder Technology, 154, 125-131 (2005).
100. Longo, S. and Lamberti, A. “Grain shear flow in a rotating drum”. Experiments in Fluid, 32(3), 313-325 (2002)
101. Lube, G., Huppert, H. E., Sparks, R. S. J., and Hallworth, M. A. “Axisymmetric collapses of granular columns.” Journal of Fluid Mechanics, 508, 175-199 (2004)
102. Lube, G., Huppert, H. E., Sparks, R. S. J., and Freundt, A. “Collapses of two-dimensional granular columns.” Physical Review E, 72, 041301-1-10 (2005)
103. Lube, Gert. “The flow and depositional mechanisms of granular matter: Experimental and field studies with implications for pyroclastic flows.” Ph.D thesis der Christian_Albrechts_Universität Kiel. (2006)
104. Lube, G., Cronin, S. J., Platz, T., Freundt, A., Procter, J. N., Henderson, C., and Sheridan, M. F. “Flow and deposition of pyroclastic granular flows: A type example from the 1975 Ngauruhoe eruption, New Zealand.” Journal of Volcanology and Geothermal Research, 161, 165-186 (2007)
105. Lube, G., Huppert, H. E., Sparks, R. S. J., and Freundt, A. “Static and flowing regions in granular collapses down channels.” Physics of Fluids, 19, 043301 (2007)
106. Majmudar, T, S., Sperl, M., Luding, S., and Behringer R. P. “The Jamming Transition in Granular Systems.” Phys. Rev. Lett. 98, 058001 (2007)
107. Makse, H. A., Cizeau, P., Stanley, H. E. “Possible Stratification Mechanism in Granular Mixtures.” Physical Review Letter. 78, 3298-3301 (1997).
108. Malloggi, F., Lanuza, J., Andreotti, B., and Cl´ement, E. “Erosion waves”transverse instabilities and fingering.” Europhysics Letters, 75, 825-831 (2006)
109. Maneval, J. E., Hill, K. M., Smith, B. E., Caprihan, A., and Fukushima, E. “Effects of end wall friction in rotating cylinder granular flow experiments.” Granular Matter, 7(4), 199-202 (2005)
110. Mangeney, A., Bouchut, F., Thomas, N., Vilotte, J. P, and Bristeau, M. O. “Numerical modeling of self-channeling granular flows and of their levée-channel deposits.” Journal of Geophysical Research, 112, F02017 (2007)
111. McGeary, R. K. “Mechanical packing of spherical particles.” Journal of the American Ceramic Society, 44, 513-522 (1961)
112. Medved, M., Jaeger, H. M., and Nagel, S. R. “Modes of response in horizontally vibrated granular matter.” Europhysics Letters, 52 (1), 66-72 (2000).
113. Mehta, A. “Granular Physics.” Cambridge University Press, UK. (2007)
114. Mellmann, J. “The transverse motion of solids in rotating cylinders-forms of motion and transition behavior.” Powder Technology. 118(3), 251-270 (2001)
115. Mellmann, J., Specht, E., and Liu, X. “Prediction of rolling bed motion in rotating cylinders.” AIChE Journal, 50(11), 2783-2793 (2004)
116. Melo, F., Umbanhowar, P., Swinney, and H. L. “Transition to parametric wave patterns in a vertically oscillated granular layer.” Physical Review Letter, 72(1), 72-76 (1994)
117. Menon, N and Durian, D. J. “Particle Motions in a Gas-Fluidized Bed of Sand.” Physical Review Letters, 79(18), 3407-3410 (1997)
118. Metcalfe, G., Tennakoon, S. G. K., Kondic, L., and Schaeffer, D. G. “Granular friction, Coulomb failure, and the fluid-solid transition for horizontally shaken granular materials.” Physical Review E, 62, 031302-15 (2002)
119. Mitarai, N. and Norj, F. “Wet granular materials.” Advances in Physics, 55 , 1-45 (2006)
120. Mitarai, N. and Nakanishi, H. “Bagnold Scaling, Density Plateau, and Kinetic Theory Analysis of Dense Granular Flow.” Physical Review Letters, 94 , 128001-1-4 (2005)
121. Möbius, M. E., Lauderdale, B. E., and Nagel, S. R. “Brazil-nut effect Size separation of granular particles.” Nature, 414 , 270 (2001)
122. Moriwaki, H., Inokuchi, T., Hattanji, T., Sassa, K., Ochiai, H., and Wang, G. “Failure processes in a full-scale landslide experiment using a rainfall simulator.” Landslides, 1, 277-288 (2004)
123. Mueth, D. M., Jaeger, H. M., and Nagel S. R. “Force distributions in three-dimensional granular assemblies: Effects of packing order and interparticle friction.” Physical Review E, 041304 (2001)
124. Mustoe, G. G. W., and Miyata, M. “Material flow analyses of non-circular shaped granular media using discrete element methods.” Journal of Engineering Mechanics, 127(10), 1017-1026 (2001)
125. Nadler, S., Bonnefoy, O., Raihane, A., Chaix, J-M., Gelet, J-L., and Thomas G. “Numerical simulation of granular media under horizontal vibrations.” 6th International Conference on Micromechanics of Granular Media, Golden, Colorado: United States. (2009)
126. Nagasawa, T. and Shimomura, Y. Plastics, H. “Mechanism of formation of Shish Kebab structures.” Journal of Polymer Science, 12, 2291-2308 (1974)
127. Nakagawa, M., Altobelli, S. A., Caprihan, A., Fukushima, E., and Jeong, E. K. “Non-invasive measurements of granular flows by magnetic resonance imaging.” Experiments in Fluids, 16, 54-60 (1993)
128. Nakagawa, M. Altobelli, S. A. Caprihan, A. and Fukushima, E. “NMRI study: axial migration of radially segregated core of granular mixtures in a horizontal rotating cylinder.” Chemical Engineering Science, 52(23), 4423-4428 (1997)
129. Nohguchia, Y. and Ozawab, H. “On the vortex formation at the moving front of lightweight granular particles.” Physica D, 238, 20-26 (2009)
130. Orpe, A.V. and Khakhar, D. V. “Scaling Relations for Granular Flow in Quasi-Two-Dimensional Rotating Cylinders.” Physical Review E, 64, 031302.1-13 (2001)
131. Orpe, A. V. and Khakhar, D. V. “Rheology of surface granular flows.” Journal of Fluid Mechanics, 571, 1-32, (2007)
132. Ottino, J. M., and Khakhar, D. V. “Open problems in active chaotic flows: Competition between chaos and order in granular materials.” Chaos, 12(2), 400-408 (2002)
133. Owen, L. A., Kamp, U., Khattak G. A., Harp E. L., Keefer D. K., and Bauer M. A. “Landslides triggered by the 8 October 2005 Kashmir earthquake.” Geomorphology, 94. 1-9 (2008)
134. Papa, M., Egashira, S., and Itoh, T. “Critical conditions of bed sediment entrainment due to debris flow.” Natural Hazards and Earth System Sciences, 4, 469-474 (2004)
135. Perng ,A. T. H., Capart , H., and Chou, H. T. “Granular configurations, motions, and correlations in slow uniform flows driven by an inclined conveyor belt.” Granular Matter, 8, 5-17 (2006)
136. Pohlman, N. A., Ottino, J. M., and Lueptow, R. M. “End-wall effects in granular tumblers: From quasi-two-dimensional flow to three-dimensional flow.” Physical Review E, 74(3), 031305-1-13 (2006)
137. Pohlman, N. A., Severson, B. L., Ottino, J. M., and Lueptow, R. M. “Suface roughness effects in granular matter: influence on angle of repose and the absence of segregation.” Physical Review E, 73, 031304 (2006a).
138. Pohlman, N. A., Ottino, J. M., and Lueptow R. M. “End-wall effects in granular tumblers: From quasi-two-dimensional flow to three-dimensional flow.” Physical Review E, 74, 031305 (2006b)
139. Pouliquen, O., Delour, J., and Savage, S. B. “Fingering in granular flows.” Nature, 386, 816-817 (1997)
140. Pouliquen, O. “Velocity Correlations in Dense Granular Flows.” Physical Review Letter, 93, 248001 (2004)
141. Pouliquen, O. and Forterre Y. “A non-local rheology for dense granular flows.” Philosophical Transactions A, 367, 5091-5107, (2009)
142. Powers, T. R. and Goldstein R. E. “Pearling and Pinching: Propagation of Rayleigh Instabilities.” Physical Review Letter, 78(13), 2555-2558 (1997)
143. Pudasaini, S. P. and Hutter, K. “Avalanche dynamics.” Springer, Germany. (2007)
144. Raihane, A., Bonnefoy, O., Nadler, S., Gelet, J. L., Chaix, J. M., and Thomas G. “Convective flow in a horizontally vibrated 3D granular packing.” 6th International Conference on Micromechanics of Granular Media, Golden, Colorado: United States. (2009)
145. Raihane, A., Bonnefoy, O., Chaix, J, M., Gelet, J, L., and Thomas, G. “Analysis of the densification of a vibrated sand packing.” 6th International Conference on Micromechanics of Granular Media, Golden, Colorado: United States. (2009)
146. Rao, K. K. and Nott, P. R. “An introduction to granular flow.” Cambridge University Press, UK. (2008)
147. Rapaport, D. C. “Simulational studies of axial granular segregation in a rotating cylinder.” Physical Review E, 65, 061306-061317 (2002).
148. Reynolds, O. “On the dilatancy of media composed of rigid particles in contact.” Philosophical Magazine Series 5, 20, 469-481 (1885)
149. Richard, P. and Taberlet, N. “Recent advances in DEM simulations of grains in a rotating drum.” Soft Matter, 4, 1345-1348 (2008)
150. Ristow, G. H. “Simulating granular flow with molecular dynamics.” Journal of Physics I France, 2, 649-662 (1992)
151. Ristow, G. H., Straßburger, G., and Rehberg, I. “Phase diagram and scaling of granular materials under horizontal vibrations.” Physical Review Letter, 79, 833-836 (1997)
152. Roche, O., Gilbertson, M. A., Phillips, J. C., and Sparks, R. S. J. “Experimental study of gas-fluidized granular flows with implications for pyroclastic flow emplacement.” Journal of Geophysical Research, 109, B10201 (2004)
153. Rosato, A., Strandburg, K. J., Prinz, F., and Swendsen, R. H. “Why the Brazil nuts are on top: size segregation of particulate matter by shaking.” Physical Review Letter, 58, 1038 -1040 (1987)
154. Rothman, D. H. “Oscillons, spiral waves, and stripes in a model of vibrated sand.” Physical Review E, 57(2), 1239-1242 (1998)
155. Santomaso, A. Olivi, M., and Panu, P. “Mechanisms of mixing of granular materials in drum mixtures under rolling regime.” Chemical Engineering Science, 59, 3269-3280 (2004)
156. Sanfratello, L. and Fukushima, E. “Experimental studies of density segregation in the 3D rotating cylinder and the absence of banding.” Granular Matter, 11(2) 73-78 (2009)
157. Sarath, G. K. T. and Behringer, R. P. “Vertical and horizontal vibration of granular materials: coulomb Friction and a novel switching state.” Physical Review Letter, 81(4), 794-797 (1998)
158. Sassa, K., Fukuoka, H., Wang, G., and Ishikawa. N. “Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics.” Landslides, 1, 7-19 (2004)
159. Sassa, K., Fukuoka, H., Wang, F., and Wang, G. “Dynamic properties of earthquake-induced large-scale rapid landslides within past landslide masses.” Landslides. 2: 125-134 (2005)
160. Savage, S. B., and Jeffrey, D. J. “The Stress Tensor in a Granular Flow at High Shear Rates.” Journal of Fluid Mechanics, 110, 255-272 (1981)
161. Schiffer, P. “Granular physics: A bridge to sandpile stability.” Nature Physics, 1, 21-22 (2005)
162. Seed, H. B. and Goodman, R. E. “Slope stability in cohesionless materials during Earthquakes.” Soil Mechanics and Bituminous Materials Research Laboratory (1963).
163. Sepulveda, N., Krstulovic, G., and Rica, S. “Scaling laws in granular continuous avalanches in a rotating drum.” Physica A, 356, 178-183 (2005)
164. Siavoshi, S. and Kudrolli, A. “Failure of a granular step.” Physical Review E, 71, 051302-1-6 (2005)
165. Silbert, L. E., Ertaş, D., Grest, G. S., Halsey, T. C., Levine, D., and Plimpton, S. J. “Granular flow down an inclined plane: Bagnold scaling and rheology.” Physical Review E, 64, 051302 (2001)
166. Shoichi, S. “Molecular-dynamics simulations of granular of granular axial segregation in a rotating cylinder.” Modern Physics Letters B, 12, 115-122 (1998)
167. Stead, D., Eberhardt, E., and Coggan, J.S. “Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques.” Engineering Geology, 83, 217-235(2006)
168. Taberlet, N., Richard, P., Valance, A., Losert, W., Pasini J. M., Jenkins, J. T., and Delannay, R. “Superstable Granular Heap in a Thin Channel.” Physical Review Letter, 91, 264301-1-4 (2003)
169. Taberlet, N. Losert, W., and Richard, P. “Understanding the dynamics of segregation bands of simulated granular material in a rotating drum.” Europhysics Letters, 68, 522-528 (2004).
170. Taberlet, N., Patrick, R., and Hinch, E. J. “Diffusion of a granular pulse in a rotating drum.” Physical Review E, 73, 041301.1-6 (2006)
171. Taberlet, N., Newey, M., Richard, P., and Losert, W. “On axial segregation in a tumbler: an experimental and numerical study.” Journal of Statistical Mechanics: Theory and Experiment, 07013 (2006)
172. Taberlet, N., Richard, P., Jenkins, J. T., and Delannay, R. “Density inversion in rapid granular flows: the supported regime.” European Physical Journal E, 22, 17–24 (2007)
173. Tang, C.L., Hu, J. C., Lin, M. L., Angelier, J., Lu, C. Y., Chan, Y. C., and Chu, H. T. “The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation.” Engineering Geology, 106, 1-19 (2009)
174. Tegzes, P., Vicsek, T., and Schiffer, P. “Avalanche dynamics in wet granular materials.” Physical Review Letter, 89, 094301-4 (2002)
175. Tegzes, P., Vicsek, T., and Schiffer, P. “Development of correlations in the dynamics of wet granular avalanches.” Physical Review E, 67, 051303 (2003)
176. Thomas, N. “Reverse and intermediate segregation of large beads in dry granular media.” Physical Review E, 62, 961-974 (2000)
177. Volfson, D., Tsimring, L. S., and Aranson, I. S. “Partially fluidized shear granular flows: Continuum theory and MD simulations.” Physical Review E, 68, 021301 (2003)
178. Wang, G. and Sassa, K. “Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content.” Engineering Geology, 69, 109-125 (2003)
179. Wang, G., Sassa, K., and Fukuoka, H. “Downslope volume enlargement of a debris slide–debris flow in the 1999 Hiroshima, Japan, rainstorm.” Engineering Geology, 69, 309-330 (2003)
180. Yamane, K., Nakagawa, M., Altobelli, S. A., Tanaka, T., and Tsuji, Y. “Steady particulate flows in a horizontal rotating cylinder.” Physics of Fluids, 10(6) 1419- 1427 (1998)
181. Yang, R.Y. Zou, R.P., and Yu, A.B. “Microdynamic analysis of particle flow in a horizontal rotating drum.” Powder Technology, 130, 138-146 (2003)
182. Yin, Y., Wang, F., and Sun, P. “Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China.” Landslides, 6, 139-151 (2009)
183. Zhou, Y. C., Xu, B. H., and Yu, A. B. “Numerical investigation of the angle of repose of monosized spheres.” Physical Review E, 64, 021301-1-8(2001)
184. Zik, O., Levine, D., Lipson, S. G., Shtrikman, S., and Stavans, J. “Rotationally induced segregation of granular materials.” Physical Review Letter, 73, 644-647 (1994)
185. Zobin, V. M., Plascencia I., Reyes, G., and Navarro, C. “The characteristics of seismic signals produced by lahars and pyroclastic flows: Volcán de Colima, México.” Journal of Volcanology and Geothermal Research, 179, 157-167(2009)
指導教授 周憲德(Hsien-Ter Chou) 審核日期 2010-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明