博碩士論文 973204035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.119.29.162
姓名 陳意雯(Yi-Wen Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米鈀/氧化鈰觸媒之甲苯完全氧化反應之應用
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究之目的為發展低溫反應活性及耐久性良好的觸媒,並尋求最符合經濟效益應用於有機廢氣物之去除。處理有機廢氣物之觸媒主要分為(1)低活性但是價位便宜的金屬氧化物(CrO3、CuO)及(2)高活性,但是價位相對較高的貴重金屬(Pt、Rh、Pd、Au)。本研究選擇鈀觸媒是因為相較於其他貴重金屬(Pt、Au、Rh),鈀金屬的價格遠低於金與白金,並且只需要極少的用量即具有很高的活性,因此鈀觸媒是一個好的金屬觸媒應用在有機廢氣物的去除,本研究使用甲苯做為有機廢氣反應指標物。
本研究探討了將奈米級的鈀承載於不同來源的氧化鈰擔體上對甲苯反應活性的影響,以初濕含浸法製備Pd/CeO2觸媒,其中擔體包含由Nikki公司取得之奈米氧化鈰以及由Evonik Degussa公司取得之奈米氧化鈰(NanoCeria)。其樣品結構鑑定方面,主要是以X光繞射儀(XRD),氮氣吸附-脫附儀(N2-sorption),穿透式電子顯微鏡(TEM),高解析度穿透式電子顯微鏡(HRTEM)與X光電子能譜儀(XPS),進行鑑定與分析。從XRD圖譜可觀察到擔體皆為結晶良好的二氧化鈰,此外亦可發現XRD分析圖譜中偵測不到鈀的波峰,代表鈀的顆粒太小超過儀器的偵測限制(4奈米),使其無法量測。BET量測結果顯示氧化鈰(Nikki)比表面積約為氧化鈰(Degussa)的2倍。HRTEM圖中則可看出鈀粒子在氧化鈰(Nikki)擔體上,粒徑約為2奈米,而鈀粒子在氧化鈰(Degussa)擔體上,粒徑則約為5奈米。XPS量測結果顯示在氫氣還原300 ℃所製備的鈀觸媒具有較多的元素態。
本研究以連續式固定床反應器來測試鈀承載於氧化鈰觸媒應用於甲苯氧化反應之活性。在所有的觸媒之中,鈀承載於Nikki公司之二氧化鈰具有高的甲苯氧化活性,反應條件甲苯濃度為8.564 g/m3 (2085 ppm),進料流速及空間流速分別為40 ml/min及10,000 h−1, 其完全氧化溫度為210℃,將此觸媒通氫氣還原於300 ℃ 2小時之後進行甲苯氧化反應,其甲苯完全氧化溫度降為170 ℃。本研究結果顯示以鈀承載於Nikki公司之二氧化鈰煅燒400 ℃ 8小時並通氫氣還原於300 ℃ 2小時之觸媒活性最佳,其原因為氧化鈰(Nikki)具有高表面積,鈀顆粒較小且分散性佳。適當的氫氣環原處理觸媒,可成功獲得一系列高分散性奈米鈀觸媒,並具有高甲苯轉化率,同時具有穩定的耐久測試,應用於甲苯氧化反應。
摘要(英) The purpose of this study was to develop a catalyst which had high activity and durability at the low-temperature for application in the volatile organic compounds removal. The most active catalysts belong to two categories: (1) low activity and low cost of metal oxide (Cr2O3, CuO) and (2) high activity and high cost of noble metals such as Pt, Rh, Pd and Au. In this study, compared to other noble metals (Pt, Au, Rh), Pd is better than Pt and Au because it is cheaper and only very small amount of Pd is needed. The palladium catalyst is a good metal catalyst used in the removal of volatile organic compounds. Toluene has been chosen as VOC probe molecule in this study.
This study investigated the nano-palladium supported on the different sources of ceria from Evonik Degussa Company and Nikki Company. The catalysts were prepared by incipient-wetness impregnation. The supported palladium catalysts were characterized by powder X-ray diffraction (XRD), N2 sorption, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and X-ray Photoelectron Spectroscopy (XPS). XRD pattern showed the crystalline ceria. No distinct palladium peaks were observed, because the particle size of palladium was too small to detect. The BET surface area of CeO2 from Nikki was about as twice as that from Evonik Degussa. The HRTEM images clearly showed that the average particle size of Pd was ~2 nm on CeO2 (Nikki) support and the average particle size of Pd was ~5 nm on CeO2 (from Evonik Degussa) support. XPS spectra showed that the catalyst pretreated with hydrogen at 300 ℃ had more metallic palladium species.
Activities for toluene oxidation on Pd/CeO2 catalysts were measured using a fixed bed continuous flow reactor. Palladium catalysts supported on ceria from Nikki demonstrated the higher activity. The reactant gas containing air/toluene (8.564 g/m3 (2085 ppm) of toluene) was fed into the reactor with a total flow rate of 40 ml/min (space velocity: 10,000 h−1), and the completely oxidation temperature of toluene was 210 ℃. For the catalyst pretreated with hydrogen at 300 ℃ for 2 h, the toluene completely oxidation temperature was 170 ℃. Palladium catalysts supported on ceria from Nikki Company calcined at 400 ℃ for 8 h and pretreated with hydrogen at 300 ℃ for 2 h demonstrated the highest activity, because ceria from Nikki had a high surface area and well dispersion of palladium particles. By regulating the preparation and pretreatment procedure and the compositions of Pd/CeO2 catalyst, we have developed a catalyst which had high toluene conversion and high stability for toluene oxidation reaction.
關鍵字(中) ★ 氧化鈰
★ 鈀觸媒
★ 有機廢氣
★ 催化燃燒
關鍵字(英) ★ Palladium catalyst
★ CeO2
★ VOCs
★ Catalytic combustion
論文目次 Table of Contents
摘要.....................................................I
Abstract...............................................III
Table of Contents........................................V
List of Figures.......................................VIII
List of Tables.........................................XII
Chapter 1. Introduction..................................1
Chapter 2. Literature Review.............................3
2.1 Introduction toluene.................................3
2.2 Introduction CeO2....................................3
2.3 Applications of palladium catalysts..................4
2.3.1 Hydrocarbons oxidation.............................5
2.3.2 NO-CO reaction.....................................6
2.3.3 Water-gas-shift reaction...........................6
2.4 Toluene oxidation....................................6
2.4.1 Support effect.....................................7
2.4.2 Calcined temperature effect........................7
2.4.3 Effect of gas treatment method ....................8
2.4.4 Reaction mechanisms...............................11
2.5 Catalyst deactivation...............................11
Chapter 3. Experimental.................................14
3.1 Chemicals...........................................14
3.2. Catalyst preparation...............................14
3.2.1 Preparation of palladium catalysts................14
3.2.2 Hydrogen reduction treatment......................14
3.3 Characterization....................................14
3.3.1 ICP-MS............................................14
3.3.2 XRD ...............................................15
3.3.3 N2-sorption.......................................15
3.3.4 SEM ...............................................15
3.3.5 TEM and HRTEM.....................................15
3.3.6 XPS ...............................................16
3.4 Reaction testing....................................16
Chapter 4. The catalytic properties of Pd/CeO2 on oxidation of toluene....................................20
4.1 Introduction........................................20
4.2 Result and discussion...............................21
4.2.1 ICP-MS............................................21
4.2.2 XRD ...............................................22
4.2.3 N2-sorption.......................................25
4.2.4 SEM ...............................................33
4.2.5 TEM and HRTEM.....................................34
4.2.6 XPS...............................................41
4.3 Catalytic activity on toluene reaction..............43
4.3.1 Optimization of Pd loadings.......................43
4.3.2 Effect of the calcinations duration time..........45
4.3.3 Effect of support.................................47
4.4 Summary.............................................49
Chapter 5. Influence of pretreatment with hydrogen on Pd/CeO2 for catalytic destruction of toluene............50
5.1 Introduction........................................50
5.2 Result and discussion...............................51
5.2.1 ICP-MS............................................51
5.2.2 XRD ...............................................52
5.2.3 N2-sorption.......................................54
5.2.4 TEM/HRTEM results and EDS analysis................56
5.2.5 XPS ...............................................61
5.3 Catalytic activity on toluene reaction..............65
5.3.1 Effect of the calcinations temperature............65
5.3.2 Influence of pretreatment.........................66
5.3.3 Stability of prereduced Pd/CeO2 catalyst..........68
5.4 Summary.............................................69
Chapter 6. Summary......................................70
Reference ...............................................71
參考文獻 Batista, J., Pintar, A., Gomilsek, J. P., Kodre, A., Bornette, F., “On the structural characteristics of γ-alumina-supported Pd–Cu bimetallic catalysts”, Appl.
Catal. A: Gen. 217 (2001) 55.
Bickford, E. S., Velu, S., Song, C., “Nano-structured CeO2 supported Cu-Pd bimetallic catalysts for the oxygen-assisted water–gas-shift reaction”, Catal. Today. 99 (2005) 347.
Chen, Z. and Gao, Q., “Enhanced carbon monoxide oxidation activity over gold–ceria nanocomposites” , Appl. Catal. B: Environ. 84 (2008) 790.
Derwent, R. G., Jenkin, M. E., Saunders, S. M., “Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions”, Atmos. Environ. 30 (1996) 181.
Derwent, R. G., Jenkin, M. E., Saunders, S. M., Pilling, M. J., “Photochemical ozone creation potentials for organic compounds in northwest Europe calculated with a master chemical mechanism”, Atmos. Environ. 32 (1998) 2429.
Donley, E., Lewandowski, D., “Optimized design and operating parameters for minimizing emissions during voc thermal oxidation”, Met. Finish. 98 (2000) 446.
Edwards, J. K., Solsona, B. E., Landon, P., Carley, A. F., Herzing, A., Kiely, C. J., Hutchings, G. J., “Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au–Pd catalysts”, J. Catal. 236 (2005) 69.
Giraudon, J. M., Elhachimi, A., Wyrwalski, F., Siffert, S., Aboukais, A., Lamonier, J. F., Leclercq, G., “Studies of the activation process over Pd perovskite-type oxides used for catalytic oxidation of toluene", Appl. Catal. B: Environ. 75 (2007) 157.
Golunski, S. E. H., Hatcher, A., Rajaram, R. R., Truex, T. J., “Origins of low-temperature three-way activity in Pt/CeO2”, Appl. Catal. B:Environ. 5 (1995) 367.
Gonzalez-velasco, J. R., Aranzabal, A., Gutierrez-Ortiz, J. I., Lopez-Fonseca. R., Gutierrez-Ortiz, M. A., “Activity and product distribution of alumina supported platinum and palladium catalysts in the gas-phase oxidative decomposition of chlorinated hydrocarbons” , Appl. Catal. B: Environ. 19 (1998) 189.
Hicks, R.F., Qi, H., Young, M. L., Lee, R.G., “Effect of catalyst structure on methane oxidation over palladium on alumina”, J. Catal. 122 (1990) 295.
Hosseini, M., Siffert, S., Tidahy, H.L., Cousin, R., Lamonier, J. F., Aboukais, A., Vantomme, A., Roussel, M., Su, B. L., “Promotional effect of gold added to palladium supported on a new mesoporous TiO2 for total oxidation of volatile organic compounds”, Catal. Today. 122 (2007) 391.
Hosseini, M., Siffert, S., Cousin, R., Aboukais, A., Hadj-Sadok, Su, Z., B. L., “Total oxidation of VOCs on Pd and/or Au supported on TiO2/ZrO2 followed by ‘‘operando’’ DRIFT”, C. R. Chimie. 12 (2009) 654.
Idakiev, V., Ilieva, L., Andreeva, D., Blin, J.-L., Gigot, L.and Su, B.-L., “Complete benzene oxidation over gold-vanadia catalysts supported on nanostructured mesoporous titania and zirconia”, Appl. Catal. A: Gen. 243 (2003) 25.
Idakiev, V., Tabakova, T., Yuan, Z.Y.and Su, B.L., “Gold catalysts supported on mesoporous titania for low-temperature water–gas shift reaction,” Appl. Catal. A: Gen. 270 (2004)135.
Ihm, S.K., Du, Y., Kim, D. C., Jeong, K.E., “Low-temperature deactivation and oxidation state of Pd/γ-Al2O3 catalysts for total oxidation of n-hexane”,
Catal.Today. 93 (2004) 148.
Kapoor, M.P., Ichihashi, Y., Kuraoka, K., Matsumura, Y., Mol, J., “Catalytic methanol decomposition over palladium deposited on thermally stable mesoporous titanium oxide”, Journal of Molecular Catalysis A: Chemical. 198 (2003) 303.
Karita, R., Kusaba, H., Sasaki, K., Teraoka, Y., “Synthesis, characterization and catalytic activity for NO–CO reaction of Pd–(La, Sr)2MnO4 system”,
Catal. Today. 119 (2007) 83.
Kim, H. S., Kim, T. W., Koh, H.L., Lee, S. H., Min, B. R., “Complete benzene oxidation over Pt-Pd bimetal catalyst supported on γ-alumina: influence of Pt-Pd ratio on the catalytic activity”, Appl. Catal. A:Gen. 280 (2005) 125.
Kim, S. C., Nahm, S. W., Shim, W. G., Lee, J. W., Moon, H., “Influence of physicochemical treatments on spent palladium based catalyst for catalytic oxidation of VOCs”, Journal of Hazardous Materials 141 (2007) 305.
Li, W. C., Comotti, M., Schuth F., “Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition–precipitation or impregnation”, J. Catal. 237 (2006) 190.
Liebscher, H., “Economic solutions for compliance to the new European VOC Directive”, Prog. Org. Coat. 40 (2000) 75.
Lyubovsky, M., Pfefferle, L., “Complete methane oxidation over Pd catalyst supported on α-alumina. Influence of temperature and oxygen pressure on the catalyst activity”, Catal. Today. 47 (1999) 29.
Matsumura, Y., Shen, W. J., Ichihashi, Y., Okumura, M., “Low-Temperature Methanol Synthesis Catalyzed over Ultrafine Palladium Particles Supported on Cerium Oxide”, J. Catal. 197 (2001) 267.
Morikawa, A., Suzuki, T., Kanazawa, T., Kikuta, K., Suda, A., Shinjo, H., “A new concept in high performance ceria–zirconia oxygen storage capacity material with Al2O3 as a diffusion barrier”, Appl. Catal. B: Environ. 78 (2008) 210.
Muller, C.A., Maciejewski, M., Koeppel, R.A., Baiker, A., “Combustion of methane over palladium/zirconia derived from a glassy Pd–Zr alloy: effect of particle size on catalytic behavior”, J. Catal. 166 (1997) 36.
Okumura, K., Kobayashi, T., Tanaka, H., Niwa, M., “Toluene combustion over palladium supported on various metal oxide supports”, Appl. Catal. B: Environ. 44 (2003) 325.
Papaefthimiou, P., Verykios, X. E., Ioannides, T., “Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts”, Appl. Catal. B: Environ. 13 (1997) 175.
Ribeiro, F. H., Chow, M., Dallabetta, R.A., “Kinetics of the Complete Oxidation of Methane over Supported Palladium Catalysts”, J. Catal. 146 (1994) 537.
Ryu, C. K., Ryoo, M. W., Ryu, I. S., Kang, S. K., “Catalytic combustion of methane over supported bimetallic Pd catalysts: Effects of Ru or Rh addition”, Catal. Today 47 (1999) 141.
Schmieg, S. J. and Belton, D. N., “Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive catalyst”, Appl. Catal. B. Environ., 6 (1995)127.
Scire, S., Minico, S., Crisafulli, C., Satriano, C., Pistone, A., “Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts”, Appl. Catal. B:Environ. 40 (2003) 43.
Sekizawa, K., Yano, S. I., Eguchi, K., Arai, H., “Selective removal of CO in methanol reformed gas over Cu-supported mixed metal oxides”, Appl. Catal. A: Gen. 169
(1998) 291.
Sing, K. S. W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T., “Reporting physisorption data for gas/solid systems with specific reference to the determination of surface area and porosity”, Pure & Appl. Chem. 57 (1985) 603.
Tidahy, H.L., Siffert, S., Wyrwalski, F., Lamonier, J.F., Aboukais, A., “Catalytic activity of copper and palladium based catalysts for toluene total oxidation”, Catal. Today 119 (2007) 317.
Venezia, A.M., Liotta, L. F., Dganello, G., Schay, Z., Horvath, D., Guczi, L.,
“Catalytic CO oxidation over pumice supported Pd–Ag catalysts”, Appl. Catal. A: Gen. 211 (2001) 167.
Wu, J. C. S., Lin, Z. A., Tsai, F. M., Pan, J. W., “Low temperature complete oxidation
of BTX on Pt/activated carbon catalysts”, Catal. Today 63 (2000) 419.
Zhang, Q., Zhao, L., Teng, B,, Xie, Y., Yue, L., “Pd/Ce0.8Zr0.2O2/Substrate Monolithic Catalyst for Toluene Catalytic Combustion”, Chin J Catal. 29 (2008) 373.
Zhou, R., Zhao, B., Yue, B., “Effects of CeO2-ZrO2 present in Pd/Al2O3 catalysts on the redox behavior of PdOx and their combustion activity”, Applied Surface Science 254 (2008) 4701.
Zysman, B. and Skelly, P. D., “Why Some Solvents Are Given VOC Exempt Status by the EPA and What the Future Holds”, Met. Finish. 98 (2000) 84.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2010-6-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明