參考文獻 |
1. 土質工學會,土質試驗法,日本土質工學會,第172-188頁及第247-248頁(1979)。
2. 王志偉,「微音錐應用於土壤音射特性之研究」,碩士論文,國立中央大學土木工程學系,中壢(2002)。
3. 古秉弘,「砂土中音波傳遞與量測之研究」,碩士論文,國立中央大學土木工程學系,中壢(2005)。
4. 任新紅,「強夯法加固地基的機理探討」,全國中文核心期刊路基工程,第二期,第106-107頁(2007)。
5. 李建中,「打樁引致之地表振動」,土木水利,第十卷,第四期,第46-59頁(1984)。
6. 李劭瑋,「複合式隔振設施降低波傳能量之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2005)。
7. 佐藤厚子、西川純一、山澤文雄,「衝擊加速度による改良盛土の 品質管理事例」,土與基礎,第48期,第21-23頁(2000)。
8. 周 健、張思峰、賈敏才、王冠英,「強夯理論的研究現狀及最新技術進展」,地下空間與工程學報,第二卷,第三期,第510-516頁(2006)。
9. 周國鈞,地基處理技術第一冊,中國冶金工業出版社,北京,第1-38頁(1989)。
10. 沈茂松,實用土壤力學試驗,文笙書局,台北,第137-264頁(1998)。
11. 林則名,「衝擊加速度與砂土力學性質之研究」,碩士論文,國立中央大學土木工程學系,中壢(2009)。
12. 施國欽,大地工程學(二)基礎工程篇,文笙書局,台北,第7.1-7.24頁(2004)。
13. 黃安斌 譯,大地工程原理(Principles of Geotechnical engineering 5E,原著Braja M. Das),臺灣東華書局股份有限公司,台北,第97-158頁(2005)。
14. 曾慶軍、莫海鴻、李茂英,「強夯後地基承載力的估算」,岩石力學與工程學報,第二十五卷,增刊2,第3523-3528頁(2006)。
15. 楊朝平、鄭郁志,「路基土層性質之簡易調查法-動態圓錐貫入儀」,台灣公路工程,第三十一卷,第二期,第54-66頁(2004)。
16. 詹金林、水偉厚、何立軍「強夯法地基處理設計及夯後檢測」,施工技術,第三十七卷,增刊,第124-128頁(2008)。
17. 詹有智,「砂土承受夯擊時之動應力分布」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
18. 趙煉恒、李 亮、何長明、鄒金鋒、曾中林,「土石混填路堤強夯加固範圍研究」,中國公路學報,第二十一卷,第一期,第12-18頁(2008)。
19. 歐志忠,「黏性土壤中柱體側向抵抗與評估方法之研究」,碩士論文,國立中央大學土木工程學系,中壢(1991)。
20. 葛致中,「驗證動力夯實夯錘夯擊效益之研究」,碩士論文,私立中原大學土木工程研究所,中壢(2002)。
21. 葉逸彬,「圓錐貫入試驗中砂土音射特性之研究」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
22. ASTM D698-07, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort,” Annual Book of ASTM Standards, West Conshohocken, (2007).
23. ASTM D1556-07, “Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method,” Annual Book of ASTM Standards, West Conshohocken, (2007).
24. ASTM D1557-07, “Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3(2,700 kN-m/m3)),” Annual Book of ASTM Standards, West Conshohocken, (2007).
25. ASTM D1883-07, “Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils,” Annual Book of ASTM Standards, West Conshohocken, (2007).
26. ASTM D2167-07, “Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method,” Annual Book of ASTM Standards, West Conshohocken, (2007).
27. ASTM D2487-06, “Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System),” Annual Book of ASTM Standards, West Conshohocken, (2006).
28. ASTM D3441-05, “Standard Test Method for Mechanical Cone Penetration Tests of soil,” Annual Book of ASTM Standards, West Conshohocken, (2005).
29. ASTM D5778-07, “Standard Test Method for Electronic Friction Cone and Piezocone Penetration Testing of Soils,” Annual Book of ASTM Standards, West Conshohocken, (2007).
30. Borg, J.P., Cogar, J.R., Lloyd, A., Ward, A., Chapman, D., Tsembelis, K., and Proud, W.G., “Computational simulations of the dynamic compaction of porous media,” International Journal of Impact Engineering, Vol. 33, pp. 109-118 (2006).
31. Barkan, D. D., Dynamic of Bases and foundation, McGraw- Hill, New York, pp.25-56 (1962).
32. Das, B.M., Principles of Geotechnical Engineering 5E, Brooks/Cole, Singapore (2002).
33. Dowding, K.J., Beck, J.V., and Blackwell, B.F., “Estimating Temperature - Dependent Thermal Properties,” Journal of Thermo physics and Heat Transfer, Vol 13, No. 3, pp. 328-336(1999).
34. Davis, J.L., and Chudobiak, W.J., “In-site Meter for Measuring Relative Permittivity of Soils,” Geological Survey of Canada, Paper 75-1A, pp. 75-79(1975).
35. Ewing, W.M., Jardetzky, W.S., and Press, P., “Elastic Waves in Layered Media,” McGraw-Hill (1957).
36. Hansbo, S., “Dynamic Consolidation of Soil by a Falling Weight,” Ground Engineering, Vol.11, No.5, pp.27-36 (1978).
37. Head, K. H., “Effective Stress Tests,” Manual of Soil Laboratory Testing, Vol.3, ELE-International Limited, pp.184-196 (1986).
38. Ito, H., and Komine, H., “Dynamic compaction properties of bentonite-based materials,” Engineering Geology, Vol. 98, pp. 133-143 (2008).
39. Jessberger, H.L., and Beine, R. A., “Heavy Tamping : Theoretical and Practical Concepts,” Proceedings of the 10th ICSMFE, Stockholm, pp.695-699 (1981).
40. Lee, F.H., and Gu, Q., “Method for Estimating Dynamic Compaction Effect on Sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 103, No. 2, pp. 139-152 (2004).
41. Leonards, G. A., Gutler, W. A., and Holtz, R. D., “Dynamic Compaction of Granular Soils,” Journal of the Geotechnical Engineering Division, ASCE, Vol.106, No.GT1, pp.35-44 (1980).
42. Lukas, R. G., “Geotechnical Engineering Circular No.1-Dynamic Compaction,” U.S. Department of Transportation, Federal Highway Administration, pp.255-316 (1995).
43. Mayne, P. W., Jones, J. S., and Dumas, J. C., “Ground Response to Dynamic Compaction,” Journal of Geotechnical Engineering, ASCE, Vol.110, No.6, pp.757-774 (1984).
44. Menard, L., and Broise, Y., “Theoretical and Practical Aspects of Dynamic Consolidation,” Geotechnique, Vol.25, No.1, pp.3-18 (1975).
45. Noborio, K., “Measurement of Soil Water Content and Electric Conductivity by Time Domain Reflectometry: a Review,” Computational Electronic Agriculture, Vol.31, No.3, pp. 213-237(2001).
46. Proctor, R.R., “Design and Construction of Rolled Earth Dams,” Engineering News Record, Vol. 3, pp. 245-248, 286-289, 348-351, 372-376(1933).
47. Pan, J.L., and Selby, A.R., “Simulation of dynamic compaction of loose granular soils,” Advances in Engineering Software, Vol. 33, pp. 631-640 (2002).
48. Theissen, J. R., and Wood, W. C., “Vibration in Structures Adjacent to Pile Driving,” Dames and Moore Engineering Bulletin, No.60, pp.4-21 (1982).
49. Wiss, J.F., “Construction Vibrations: State-of-the-Art,” Journal of the Geotechnical Engineering Division, Proceedings of the ASCE, Vol. 107, GT2, pp. 167-182 (1981).
50. Zou, W.L., Wang, Z., and Yao, Z.F., “Effect of Dynamic Compaction on Placement of High-Road Embankment,” Advances in Engineering Software, Vol. 19, pp. 316-323 (2005).
|