博碩士論文 973206018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.22.216.30
姓名 林渤原(Bor-yuan Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 非熱電漿結合觸媒與吸附劑去除C3F8之研究
(Removal of C3F8 via the Combination of Non-thermal Plasma, Catalysis and Adsorption)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) C3F8為全氟化物之一,近年來已逐漸取代CF4與C2F6成為高科技產業CVD腔體清洗之主要製程氣體。由於全氟化物具長生命週期與強活外線吸收能力,致使其全球暖化潛勢極高,乃京都議定書明訂管制之溫室效應氣體。
就全氟化物破壞削減技術而言,目前仍以高溫技術為主流,如燃燒法與觸媒法,然高科技產業機檯尾氣排放屬間歇式,上述技術為確保全氟化物去除效率能符合標準,即使於非排放期間亦需維持於一定溫度,因此能量利用效率相對不佳。不同於上述技術,非熱電漿具可間歇操作、快速啟動及反應溫度接近室溫等優點,然若欲將此技術大規模實場化,去除污染物之能量效率與產物選擇性尚有待改善。為克服上述瓶頸,本研究嘗試以非熱電漿同時結合觸媒與吸附劑(combining the nonthermal plasma, adsorption and catalysis, CPAC)去除全氟化物,此技術立論基礎為吸附作用與催化作用可改善非熱電漿破壞污染物之能量效率與產物選擇性。本研究最主要的目的為評估CPAC方法破壞PFCs之可行性,此外,為釐清CPAC內觸媒和吸附劑之填充方式是否會影響C3F8去除效能,本研究亦使用不同組合方式,包括分層或混合填充;再者,為驗證CPAC是否可有效提升C3F8之去除效能,本研究亦使用非熱電漿結合觸媒(combinations of plasma with catalysis, CPC)與非熱電漿結合吸附劑(combinations of plasma with adsorption, CPA)進行對照組實驗。
結果顯示,當比能量為34.8 kJ/L時,C3F8去除效率由高至低分別為分層CPAC (85.9%) > CPA (85%) > CPC (74.1%) > 混合CPAC (71.8%);CPAC、CPA及CPC之以CO2、CO、N2O與CF4為主,並且沒有C2F6產生,這是一件好事,其暖化潛勢遠高於C3F8 (C2F6與C3F8之GWP100分別為12,200與8,300),若C3F8經處理之後產生大量的C2F6,對全球暖化之貢獻反而有增無減。當比能量為34.8 kJ/L時,CO2產物選擇率由高至低分別為分層CPAC (82.5%)、CPA (81.1%)、CPC (73.5%)及混合CPAC (68.6%)。綜觀C3F8去除效率與CO2產物選擇率可知,分層CPAC技術優於CPA、CPC及混合CPAC。
摘要(英) With the characteristics of extremely long lifetimes and high GWPs (global warming potentials), PFCs are regulated as one of the GHGs (greenhouse gases) in Kyoto Protocol. In recent years, C3F8, one of the perfluorocompounds (PFCs), has been gradually replacing CF4 and C2F6 as the CVD (chemical vapor deposition) chamber cleaning gas used in high-tech industry. In terms of PFC abatement, the high temperature-based technologies, such as catalytic oxidation and thermal decomposition, are still the mainstream. Although acceptable removal efficiency could be achieved, these equipments have to be maintained at a certain temperature even during the period without PFC emission. Unlike the above-mentioned technologies, nonthermal plasma can be ignited and operated at room temperature, making it a potentially viable technique for PFC abatement. However, prior to further industrial application, the energy efficiency and the products’ selectivities still need to be improved. To resolve these challenges, a novel technique, combining the nonthermal plasma, adsorption and catalysis (CPAC) simultaneously, is developed in this study. This technique is proposed based on the concept that adsorption and catalysis could enhance the energy efficiency and products’ selectivities theoretically. The main purpose of this study is to demonstrate the feasibility of abating PFC via CPAC. The CPAC was constructed by introducing almost the same volumes of both packed-bed materials either as single-component layers or as a mechanical mixture. In addition to CPAC, the combinations of plasma with catalysis or adsorption alone, which are termed as CPC and CPA, are used as control as well.
The experimental results indicate that the C3F8 removal efficiencies obtained by different reactors are in the order as: single-component layers of CPAC (85.9%) > CPA (85%) > CPC (74.1%) > mechanical mixture of CPAC (71.8%), as the specific input energy (SIE, the ratio of discharge power to gas flow rate) is fixed at 34.8 kJ/L. For the different reactors tested in this study, the products detected after plasma treatment include CO2, CO, N2O and CF4. The formation of C2F6 is not observed in this study. The CO2 selectivity obtained at 34.8 kJ/L is in the sequence of single-component layers of CPAC (82.5%) > CPA (81.1%) > CPC (73.5%) > mechanical mixture of CPAC (68.6%). In summary, the removal efficiency of C3F8 and CO2 selectivity achieved with single-component layers of CPAC is greater than CPA, CPC, and mechanical mixture of CPAC.
關鍵字(中) ★ 破壞效率
★ 吸附劑
★ 觸媒
★ C3F8
★ 非熱電漿
關鍵字(英) ★ Non-Thermal Plasma
★ C3F8
★ Removal Efficiency
★ Adsorbent
★ Catalyst
論文目次 摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 X
第一章 前言 1
1-1 研究緣起 1
1-2 研究內容 2
第二章 文獻回顧 3
2-1 全氟化物之排放來源與全球暖化潛勢 3
2-1-1 全氟化物之環境危害性 3
2-1-2 全球暖化潛勢(GWP)與百萬公噸碳當量(MMTCE) 5
2-1-3 全氟化物之用途與排放源 6
2-2 八氟丙烷基本物化特性與應用 8
2-2-1 八氟丙烷之代表性 8
2-2-2 八氟丙烷基本物化特性 9
2-2-3 八氟丙烷的應用 11
2-2-4 八氟丙烷在電漿中之主要反應機制 11
2-3 目前全氟化物減量方法 14
2-3-1 製程最佳化 15
2-3-2 替代化學物 16
2-3-3 回收/再利用 17
2-3-4 破壞削減 17
2-4 目前破壞全氟化物之技術 17
2-4-1 燃燒破壞 18
2-4-2 觸媒氧化 18
2-4-3 電漿破壞 19
2-5 電漿生成原理、類型及反應機制 21
2-5-1 電漿生成原理 21
2-5-2 電漿類型 23
2-6 電漿結合觸媒 27
2-6-1 非熱電漿結合觸媒反應器之構造 27
2-6-2 非熱電漿結合觸媒之機制 29
2-7 吸附劑 36
2-7-1 兩階段電漿結合觸媒與吸附劑 36
2-7-2 單階段式電漿結合觸媒與吸附劑 37
第三章 研究設備與方法 40
3-1 實驗規劃與系統介紹 40
3-1-1 熱催化實驗與吸附實驗系統 41
3-1-2 兩階段式電漿結合觸媒與吸附劑實驗系統 42
3-1-3 單階段式電漿結合觸媒與吸附劑實驗系統 43
3-2 研究使用觸媒與吸附劑 44
3-3 研究設備 45
3-3-1 氣體供應 45
3-3-2 實驗參數控制系統 46
3-3-3 反應器 46
3-3-4 加熱設備 48
3-3-5 電力供應設備 48
3-3-6 電能消耗量測設備 48
3-3-7 反應物與產物分析設備 49
3-4 研究方法 50
3-4-1 熱催化實驗 50
3-4-2 吸附實驗 51
3-4-3 兩階段式電漿結合觸媒與吸附劑實驗 53
3-4-4 單階段式電漿結合觸媒與吸附劑實驗 55
第四章 結果與討論 56
4-1 熱催化測試與吸附能力測試 56
4-1-1 熱催化測試 56
4-1-2 吸附能力測試 57
4-2 兩階段電漿結合觸媒與吸附劑 60
4-2-1 電漿能量 60
4-2-2 觸媒床溫度 62
4-3 單階段電漿結合觸媒與吸附劑(高溫) 63
4-4-1 單階段電漿結合單一材料(觸媒或吸附劑) 63
4-3-2 單階段電漿結合觸媒與吸附劑 65
4-4 單階段電漿結合觸媒與吸附劑(室溫) 67
4-4-1 單階段電漿結合單一材料(觸媒或吸附劑) 67
4-4-2 單階段電漿結合觸媒與吸附劑 71
4-5 反應途徑推估與GWP破壞削減率 75
4-5-1 反應途徑推估 75
4-5-2 GWP破壞削減率 76
4-6 觸媒與吸附劑之物化特性 79
4-6-1 材料之表面積與平均孔洞尺寸 79
4-6-2 材料之結晶組成 79
4-6-3 材料之表面官能基 83
第五章 結論與建議 87
5-1 結論 87
5-2 建議 88
參考文獻 89
參考文獻 Bartholomew, C.H., "Carbon deposition in steam reforming and methanation", Catal. Rev.-Sci. Eng., 24, Page 67-112, 1982.
Chae, J.O.; Demidiouk, V.; Yeulash, M.; Choi, I.C.; Jung, T.G., "Experimental study for indoor air control by plasma-catalyst hybrid system", IEEE Trans. Plasma Sci., 32, Page 493-497, 2004.
Chang, M.B.; Lee, H.M., "Abatement of perfluorocarbons with combined plasma catalysis in atmospheric-pressure environment", Catal. Today, 89, Page 109-115, 2004.
Chang, M.B.; Lee, H.M., "Emission and control of air pollutants from semiconductor manufacturing processes", Taiwan-American Natural Disaster and Environmental Protection Conference, City of Industry, CA, 2003.
Chen, H. L.; Lee, H. M.; Chen, S. H.; Chang, M. B., "Review of packed-bed plasma reactor for ozone generation and air pollution control", Ind. Eng. Chem. Res., 47, Page 2122-2130, 2008.
Chen, H. L.; Lee, H. M.; Chen, S. H.; Chao, Y.; Chang, M. B., "Review of plasma catalysis on hydrocarbon reforming for hydrogen production: Interaction, integration, and future prospects", Appl. Catal. B, 85, Page 1-9, 2008.
Chen, H.L.; Lee, H.M.; Chen, S.H.; Chang, M.B.; Yu, S.J.; Li, S.N., "Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications", Environ. Sci. Technol., 43, Page 2216-2227, 2009.
Cheng, D.G.; Zhu, X., "Reduction of Pd/HZSM-5 using oxygen glow discharge plasma for a highly durable catalyst preparation", Catal. Lett., 118, Page 260-263, 2007.
Christophorous, L.G.; Olthoff, J.K., "Fundamental electron interactions with plasma processing gases", J. Phys. Chem. Ref. Data, Vol. 27, No. 5, Page 890-911, 1998.
Demidiouk, V.; Chae, J.O., "Decomposition of volatile organic compounds in plasma-catalytic system", IEEE Trans. Plasma Sci., 33, Page 157-161, 2005.
Demidiouk, V.; Moon, S.I.; Chae, J.O., "Toluene and butyl acetate removal from air by plasma-catalytic system", Catalysis Communications, 4, Page 51-56, 2003.
Demidyuk, V.; Whitehead, J.C., "Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system", Plasma Chem. Plasma Process., 27, Page 85-94, 2007.
Einaga, H.; Ibusuki, T.; Futamura, S., "Performance evaluation of a hybrid system comprising silent discharge plasma and manganese oxide catalysts for benzene decomposition", IEEE Trans. Ind. Appl., 37, Page 1476-1482, 2001.
Eliasson, B.; Kogelschatz, U., "Nonequilibrium volume plasma chemical processing", IEEE Transactins on Plasma Science, Vol.19, Page 1063-1077, 1991.
Francke, K.P.; Miessner, H.; Rudolph, R., "Plasmacatalytic processes for environmental problems", Catal. Today, 59, Page 411-416, 2000.
Futamura, S.; Zhang, A.; Einaga, H.; Kabashima, H., "Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants", Catal. Today, 72, Page 259-265, 2002.
Gindulytè, A.; Mass, L.; Banks, B.A.; Miller, S.K.R., "Direct C-C bond breaking in the reaction of O (3P) with flouropolymers in low earth orbit", J. Phys Chem. A., 106, Page 5463-5467, 2002.
Gordillo-Vázquez, F.J., "Air plasma kinetics under the influence of sprites", J. Phys. D: Appl. Phys., 41, 2008.
Harling, A.M.; Demidyuk, V.; Fischer, S.J.; Whitehead, J.C., "Plasma-catalysis destruction of aromatics for environmental clean-up: Effect of temperature and configuration", Appl. Catal. B, 82, Page 180-189, 2008.
Holzer, F.; Kopinke, F.D.; Roland, U., "Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants", Plasma Chem. Plasma Process., 25, Page 595-611, 2005.
Holzer, F.; Roland, U.; Kopinke, F.D., "Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds part 1. Accessibility of the intra-particle volume", Applied Catalysis B: Environmental, 38, Page 163-181, 2002.
Ibuka, S., "Japan's use of ClF3”, A partnership for PFC emissions reductions, technical program present, Texas, 1998.
Indarto, A.; Choi, J.W.; Lee, H.; Song, H.K., "Decomposition of greenhouse gases by plasma", Environ Chem Lett, 6, Page 215-222, 2008.
International SEMATECH, "Reduction of perfluorocompound (PFC) emissions: 2005 state-of-the-technology report," Technology transfer #05104693A-ENG, 2005.
IPCC, "Good practice guidance and uncertainty management in national greenhouse gas inventories. PFC emissions from primary aluminium production", Page 200.
IPCC, "Intergovernmental panel on climate change fourth assessment report. Summary for policymakers", Page 6, 2007.
Jarvis, G.K.; Mayhew, C.A.; Tuckett, R.P., "Study of the gas phase reactions of several perfluorocarbons with positive ions of atmospheric interest", J. Phys Chem.,Vol. 100, 43, Page 17166-17174, 1996.
Johnson, A.D.; Pierce, R.V.; Sistern, M.I.; Kencel, M.; Sward, R.; Winzig, H.,"C2F6-based chamber clean for silane PECVD", Semiconductor International, Vol.27, Page 57-64, 2004.
Karecki, S.M.; Pruette, L.C.; Reif, R., "Reduction of global warming emissions in a dielectric etch application through use of iodofluorocarbon", A partnership for PFC emissions reductions, technical present, Texas, 1998.
Kim, H.H., "Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects", Plasma Process. Polym., 1, Page 91-110, 2004.
Kim, H.H.; Kim, J.H.; Ogata, A., "Adsorption and oxygen plasma driven catalysis for total oxidation of VOCs", Proceedings of the 6th International Symposium on Non-Thermal Plasma Technologies, Taipei, Taiwan, May, 2008.
Kim, H.H.; Ogata, A.; Futamura, S., "Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis", IEEE Trans. Plasma Sci., 34, Page 984-995, 2006.
Kim, H.H.; Ogata, A.; Futamura, S., "Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma ", Appl. Catal. B, 79, Page 356-367, 2008.
Lee, B.Y.; Park, S.H.; Lee, S.C.; Kang, M.; Choung, S.J., "Decomposition of benzene by using a discharge plasmaphotocatalyst hybrid system", Catal. Today, 93-95, Page 769-776, 2004.
Li, Z.H.; Tian, S.X.; Wang, H.T.; Tian, H.B., "Plasma treatment of Ni catalyst via a corona discharge", J. Mol. Catal. A: Chem., 211, Page149-153, 2004.
Liu, C.J.; Mallinson, R.; Lobban, L., "Nonoxidative methane conversion to acetylene over zeolite in a low temperature plasma", J. Catal., 179, Page 326-334, 1998.
Liu, C.J.; Zou, J.; Yu, K.; Cheng, D.; Han, Y.; Zhan, J.; Ratanatawanate, C.; Jang, B.W.L., "Plasma application for more environmentally friendly catalyst preparation", Pure Appl. Chem., 78, Page 1227-1238, 2006.
Mack, H.G.; Dakkouri, M.; Oberhammer, H., "Effect of fluorinatlon on the CCC bond angle in propane. Gas-phase structures of 2, 2-dlfluoropropane and perfluoropropane", J. Phys. Chem., 95, Page 3136-3138, 1991.
Magureanu, M.; Mandache, N.B.; Gaigneaux, E.; Panu, C.; Parvulescu, V.I., "Toluene oxidation in a plasma-catalytic system", J. Appl. Phys., 99, Page 123301, 2006.
Melchor, A.; Garbowski, E.; Mathieu, M.V.; Primet, M., "Physicochemical properties and isomerization activity of chlorinated Pt/Al2O3 catalyst", J. Chem. Soc., Faraday Trans. 1, 82, Page 3667-3679, 1986.
Nicole, J.; Tsiplakides, D.; Wodiunig, S.; Comninellis, C., Activation of catalyst for gas-phase combustion by electrochemical pretreatment, J. Electrochem. Soc., 144, Page L312-L314, 1997.
Ogata, A.; Ito, D.; Mizuno, K.; Kushiyama, S.; Yamamoto, T., "Removal of dilute benzene using a zeolite-hybrid plasma reactor", IEEE Trans. Ind. Appl., 37, Page 959-964, 2001.
Poppe, J.; Volkening, S.; Schaak, A.; Schutz, E.; Janek, J.; Irnbihl, R., "Electrochemical promotion of catalytic CO oxidation on Pt/YSZ catalysts under low pressure conditions", Phys. Chem. Chem. Phys., 1, Page 5241-5249, 1999.
Pruette, L. C.; Karecki, S. M.; Reif, R.,"Evaluation of trifluoroacetic anhydride as an alternative plasma enhanced chemical vapor deposition chamber clean chemistry", Journal of Vacuum Science & Technology, Vol.16, Page 1577-1581, 1998.
Ratanatawanate, C.; Macias, M.; Jang, B.W.L., "Promotion effect of the nonthermal RF plasma treatment on Ni/Al2O3 for benzene hydrogenation", Ind. Eng. Chem. Res., 44, Page 9686-9874, 2005.
Roland, U.; Holzer, F.; Kopinke, F.D., "Combination of nonthermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds Part 2. Ozone decomposition and deactivation of γ-Al2O3", Appl. Catal. B, 58, Page 217-226, 2005.
Seeley, A.; Chandler, P.; Cottle, S.; Mawle, P., "Effective PFC gas abatement in a production environment", Semiconductor fabtech-10th edition, BOC Edwards exhaust management systems, Nailsea, UK, 2000.
Van Durme, J.; Dewulf, J.; Leys, C.; Langenhove, H., "Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review", Appl. Catal. B, 78, Page 324-333, 2008.
Vayenas, C.G.; Bebelis, S.; Ladas, S., "Dependence of catalytic rates on catalyst work function", Nature, 343, Page 625-627, 1990.
Wang, J.G.; Liu, C.J.; Zhang, Y.P.; Yu, K.L.; Zhu, X.L.; He, F., "Partial oxidation of methane to syngas over glow discharge plasma treated Ni-Fe/Al2O3 catalyst", Catal. Today, 89, Page 183-191, 2004.
Wefers, K.: Bell, G.M., "Oxides and hydroxides of aluminum", Alcoa Research Lab., Technical Paper No. 19, 1972.
Zazzera, L.; Reagen, W., "Infrared study of process emissions during C3F8/02 plasma cleaning of plasma enhanced chemical vapor deposition chambers", J. Electrochem. Soc., Vol. 144, No. 10, Page 3597-3601, 1997.
Zhang, Y.; Chu, W.; Cao, W.; Luo, C.; Wen, X.; Zhou, K., "A plasma activated Ni/R-Al2O3 catalyst for the conversion of CH4 to syngas", Plasma Chem. Plasma Process., 20, Page 137-144, 2000.
Zhu, X.L.; Huo, P.P.; Zhang, Y.P.; Liu, C.J., "Characteristics of argon glow discharge plasma reduced Pt/Al2O3 catalyst", Ind. Eng. Chem. Res., 45, Page 8604-8609, 2006.
Zhu, Y.R.; Li, Z.H.; Zhou, Y.H.; Lv, J.; Wang, H.T., "Plasma treatment of Ni and Pt catalysts for partial oxidation of methane", React. Kinet. Catal. Lett., 87, Page 33-41, 2005.
Zou, J.J.; Zhang, Y.P.; Liu, C.J., "Reduction of supported noble metal ions using glow discharge plasma", Langmuir, 22, Page 11388-11394, 2006.
甘錫鴻,「壹. 全氟化物氣相層析方法之建立及半導體工業中洗滌器效率評估之應用 貳. 一氧化碳之平行比測與校正」,碩士論文,國立中央大學化學研究所,中壢,2008年。
李曼君,「以電漿結合觸媒破壞去除 NF3之初步研究」,碩士論文,國立中央大學環境工程研究所,中壢,2004年。
李灝銘、陳信良、張木彬、陳孝輝、曾錦清、魏大欽、林錕松、游生任、李壽南,「全氟化物溫室效應氣體減量技術評析」,2006清潔生產暨永續發展研討會,台北,2006年。
高正雄,電漿化學,復漢出版社,台南,1991年。
游生任,「以介電質放電技術轉化四氟甲烷及六氟乙烷之初步研究」,碩士論文,國立中央大學環境工程研究所,中壢,2000。
黃晴澤,「以非電漿結合吸附劑處理C3F8之研究」,碩士論文,國立中央大學環境工程研究所,中壢,2009年。
顏紹儀、李壽南、林俊男、江鴻銘,「兩兆雙星產業之PFCs排放現況與減量策略」,化工技術,Vol. 14,No. 1,158-165頁,2006年。
指導教授 張木彬(Moo-been Chang) 審核日期 2010-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明