博碩士論文 92246020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.191.240.94
姓名 張銓仲(Chuan-Chung Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 相位編碼元件精度對景深擴張範圍的影響
(A Definition of Tolerance Effectiveness for Pupil Engineering)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於光學取像系統來說,如何將取像系統的公差分析結果與系統所擷取之影像的影像品質相互連結一直是尚待解決的問題,尤其是具備相位編碼元件的數位取像系統,因最終的影像除了鏡頭的成像之外,也須考慮影像還原對最終影像的影響,因此僅僅利用傳統鏡頭的公差分析手法,並無法有效的對相位編碼取像系統進行分析。對於具備景深擴展能力的相位編碼取像系統而言,雖然已有相關研究指出因相位編碼元件具有抵抗取像系統中偏心誤差的能力,所以仍能維持良好的景深擴展能力。但對於相位編碼元件本身因加工製程所殘留的表面誤差,對景深擴展能力的影響程度仍需進一步的釐清,同時過去的研究多著重於相位編碼元件的光學傳遞函數特性,卻忽略了在此類數位取像系統,當影像經還原處理後,影像還原的傳遞函數對整體取像系統景深擴展能力的影響。為了能夠分析因相位編碼元件表面誤差,對相位編碼取像系統景深擴展能力的影響程度,我們首次提出了利用相位編碼元件的點擴散函數相似性、成像模擬、影像還原以及影像品質評估的分析方法,並以具有輪幅狀表面誤差的三次式相位編碼元件為例,進行系統的景深擴展能力分析。
在論文的第一章中,我們簡單介紹了相位編碼系統的基本原理以及目前在此領域的研究現況;在第二章中對於目前相位編碼取像系統中所使用的三次式相位編碼元件進行理論的推導,並加入了系統所需的影像還原原理與處理方法說明;在第三章中,分別對在論文中模擬計算時所採用的點擴散函數計算、表面誤差模型、成像模擬、影像還原以及影像品質評估的方法做完整的說明;在第四章中對具備輪幅狀表面誤差的三次式相位編碼元件進行模擬計算,以理想無表面誤差的相位編碼元件作為景深擴展性能的基準,探討在景深擴展分析時點擴散函數相似性與影像品質參數-峰值信噪比(peak signal to noise ratio, PSNR)的差異,最後並以一個經實際加工所得之相位編碼元件,其點擴散函數的實際量測與模擬結果比較來確認論文所分析結果的可靠度。
在比較點擴散函數與影像品質參數後,我們發現當相位編碼元件存在表面誤差時,點擴散函數相似性無法有效反應系統實際的景深擴展能力;但藉由引入影像品質參數後,可有效對系統的景深擴展能力進行分析。同時亦發現藉由第三章所提出的分析方法,當相位編碼元件的表面誤差的峰谷值小於0.1個波長時,系統的景深擴展能力不受表面誤差中輪幅數量的影響;當表面誤差的峰谷值需從0.1個波長放寬至0.25甚至0.50個波長時,表面誤差的輪幅數量須介於10至100之間。因此對於景深擴展能力的相位編碼取像系統,藉由論文所提出之方法,我們最終可明確知道相位編碼元件所需的製作精度以及系統的景深擴展能力受到表面誤差下的影響程度。
最後我們亦針對論文中所提出的分析方法,指出了數項須待進一步改善的方案,並藉由所觀察到的現象,對相位編碼元件的研究方向提供一些建議以作為未來的參考。
摘要(英) How to connect the result of tolerance analysis to image quality is a challenging problem for an imaging system. Because of the image quality is affected by imaging lens and image restoration in a phase coding image system, so this is much more difficult for such kind of imaging system. Although some studies have shown the performance of depth of field for a phase coding imaging system will not be affected by centering error, but variation of depth of field which causing form surface error on phase coding element is not considered yet. And most of studies focus on the properties of transfer function of phase coding element, and ignore the transfer function of image restoration itself. In order to understand the effect of surface error on phase coding element, we present a method which combining similarity of point spread function, imaging simulation, image restoration and image metric for first time to analysis the variation of depth of field. And the tolerance analysis of cubic phase mask is discussed which a spoke type surface error is included
In Chap. 1, we introduce the basic working principle of phase coding imaging system and summarize results of current related researches for it. In Chap. 2, the theories of cubic phase coding and image restoration are both described. In Chap. 3, the detail calculation produces of similarity of point spread function, imaging simulation, image restoration and image metric are described. In Chap.4, the present method which considering the effects of spoke type surface error in phase coding element is considered. And effectiveness of similarity of point spread function and an image metric (peak signal to noise ratio, PSNR) are discussed. Finally, simulation and experiment results for a cubic phase coding element are both presented also.
We find that, for a phase coding element which existing surface error, similarity of point spread function can not represent the performance of depth of field; but image metric PSNR can. And also we find if the peak to valley for a phase coding element can be better than 0.1λ, the performance of depth of field will not affected by numbers of spoke ring. If some 10 to 100 numbers of spoke ring are existed, the peak to valley of surface error can be released form 0.1λ to 0.25λ or even 0.50λ. So by using our method, the required accuracy of phase coding element and the performance of depth of filed in phase coding imaging system can be determined.
Finally, we also point out the potation applications and prospect of future research items.
關鍵字(中) ★ 影像品質參數
★ 表面誤差
★ 相位編碼
★ 景深
★ 焦深
關鍵字(英) ★ image metric
★ depth of focus
★ surface error
★ depth of field
★ phase coding
論文目次 中文摘要 i
英文摘要 iv
目錄 vi
圖目錄 viii
表目錄 xv
符號說明 xvi
一、研究背景 1
1-1 緒論 1
1-2 三次式相位編碼簡介 2
1-3 相關研究整理 6
1-4 論文結構 11
二、相位編碼理論 12
2-1 光學成像 12
2-2 三次式相位編碼 14
2-3 系統工作原理 18
三、研究方法 21
3-1 點擴散函數計算 21
3-2 表面誤差模型 24
3-3 點擴散函數相似性 28
3-4 成像模擬 32
3-5 影像還原 34
3-6 影像品質評估 36
四、公差分析流程與模擬結果 38
4-1 公差分析流程 38
4-2 數值模擬與實驗結果 41
五、結論 88
參考文獻 92
參考文獻 1.Edward R. Dowski, Jr., and W. Thomas Cathey, “Extend depth of field through wave-front coding”, Applied Optics, Vol. 34, No. 11, pp.1859-1866, 1995.
2.Edward R. Dowski, Jr. and Kenneth S. Kubala, “Modeling of wavefront-coded imaging systems”, Proc. SPIE, Vol. 4736, pp.116-126, 2002.
3.Edward R. Dowski, Jr. and Kenneth S. Kubala, “Wavefront coding a modern method of achieving high-performance and or low cost imaging systems”, Proc. SPIE, Vol. 3779, pp.137-145, 1999.
4.Edward R. Dowski, Jr., W. Thomas Cathey, and Sara C. Bradburn, “Aberration invariant optical/digital incoherent systems”, Optical Review, Vol. 3, No. 6A, pp.429-432, 1996.
5.Edward R. Dowski, Jr., Robert H. Cormack and Scott D. Sarama, “Wavefront coding: joint optimized optical and digital imaging systems”, Proc. SPIE, Vol. 4041, pp.114-120, 2000.
6.Kenneth Kubala, Edward Dowski, James Kobus and Bob Brown, “Design and optimization of aberration and error invariant space telescope systems”, Proc. SPIE, Vol. 5524, pp.54-65, 2004.
7.Edward Dowski, and Kenneth Kubala, “Reducing size weight and cost in a LWIR imaging system with wavefront coding”, Proc. SPIE, Vol. 5407, pp.66-73, 2004.
8.Kennth Kubala, Edward Dowski and W. Thomas Cathey. “Reducing complexity in computational imaging systems”, Optics Express, Vol. 11, No. 18, pp. 2102-2108, 2003.
9.Hans B. Wach, Edward R. Dowski, Jr., and W. Thomas Cathey, “ Control of chromatic focal shift through wave-front coding”, Applied Optics, Vol. 37, No.23, pp. 5359-5367, 1998.
10.Sherif S. Sherif and Peter Torok, “Pupil plane masks for super-resolution in high-numerical-aperture focusing”, Journal of Modern Optics, Vol. 51, No.13, pp. 2007-2019, 2004.
11.G. E. Johnson, P. E. X. Silveira and E. Dowski, “Analysis tools for computational imaging systems”, Proc. SPIE, Vol. 5817, pp. 34-44, 2005.
12.Gregory E. Johnson, Ash K. Macon and Goran M. Rauker, “Computational imaging design tools and methods”, Proc. SPIE, Vol. 5524, pp. 284-294, 2004.
13.Sherif S. Sherif, Edward R. Dowski and W. Thomas Cathey, “Effect of detector noise in incoherent hybrid imaging systems”, Optics Letters, Vol. 30, No. 19, pp. 2566-2568, 2005.
14.Paulo E. X. Silveira and Ramkumar Narayanswamy, “Signal-to-noise analysis to task-based imaging systems with defocus”, Applied Optics, Vol. 45, No.13, pp. 2924-2934, 2006.
15.Saeed Bagheri, Paulo E. X. Silveira and George Barbastathis, “Signal-to-noise-ratio limit to the depth-of-field extension for imaging systems with arbitrary pupil function”, Journal of Optics Society of America A, Vol. 26, No.4, pp. 895-908, 2009.
16.Hans B. Wach and Edward R. Dowski, Jr., “Noise modeling for design and simulation of computational imaging systems”, Proc. SPIE, Vol. 5438, pp. 159-170, 2004.
17.Kenneth S. Kubala, Hans B. Wach, Vladislav V. Chumachenko and Edward R. Dowski, Jr., “Increasing the depth of field in a LWIR system for improved object identification”, Proc. SPIE, Vol. 5784, pp. 146-156, 2005.
18.Saeed Bagheri, Paulo E. X. Silveira, Ramkumar Narayanswamy and Daniela Pucci de Farias, “Design and optimization of the cubic-phase pupil for the extension of the depth of field of task-based imaging systems”, Proc. SPIE, Vol. 6311, pp. 63110R1-63110R10, 2006.
19.Saeed Bagheri, Paulo E. X. Silveira, and Daniela Pucci de Farias, “Analytical optimal solution of the extension of the depth of field using cubic-phase wavefront coding. Part I. Reduced-complexity approximate representation of the modulation transfer function”, Journal of Optics Society of America A, Vol. 25, No. 5, pp. 1051-1063, 2008.
20.Saeed Bagheri, Paulo E. X. Silveira, Ramkumar Narayanswamy, and Daniela Pucci de Farias, “Analytical optimal solution of the extension of the depth of field using cubic-phase wavefront coding. Part II. Design and Optimization of the cubic phase”, Journal of Optics Society of America A, Vol. 25, No. 5, pp. 1064-1074, 2008.
21.Alan R. FitzGerrell and Edward R. Dowski, Jr., “High depth-of-field imaging without sacrificing light gathering power and resolution”, Proc. SPIE, Vol. 3205, pp. 25-36, 1997.
22.Hans B. Wach, Edward R. Dowski, Jr., and W. Thomas Cathey, “Channel reduction and applications to image processing”, Applied Optics, Vol. 39, No. 11, pp. 1794-1798, 2000.
23.Manjunath Somayaji and Marc P. Christensen, “Form factor enhancement of imaging systems using a cubic phase mask”, Computational Optical Sensing and Imaging, CMB4, 2005.
24.Manjunath Somayaji and Marc P. Christensen, “Form factor enhancement of imaging systems using a cubic phase mask”, Computational Optical Sensing and Imaging, FThU5, 2005.
25.Manjunath Somayaji and Marc P. Christensen, “Enhancing form factor and light collection of multiplex imaging by using a cubic phase mask”, Applied Optics, Vol. 45, No. 13, pp. 2911-2923, 2006.
26.Manjunath Somayaji and Marc P. Christensen, “Improving photo count and flat profiles of multiplex imaging systems with the odd-symmetry quadric phase modulation mask”, Applied Optics, Vol. 46, No. 18, pp. 3754-3765, 2007.
27.Shierf S. Shierf, W. Thomas Cathey and Edward R. Dowski, “Phase plate to extend the depth of field of incoherent hybrid imaging systems”, Applied Optics, Vol. 43, No. 13, pp. 2709-2721, 2004.
28.Wanli Chi and Nicholas George, “Electronic imaging using a logarithmic asphere”, Optics Letters, Vol. 26, No.12, pp. 875-877, 2001.
29.Wanli Chi and Nicholas George, “Computational imaging with logarithmic asphere: theory”, Journal of Optics Society of America A, Vol. 20, No.12, pp. 2260-2273, 2003.
30.Nicholas George and Wanli Chi, “Extended depth of field using a logarithmic asphere”, Journal of Optics A: Pure and Applied Optics, Vol. 5, pp. S157-S163, 2003.
31.Kaiqin Chu, Nicholas George and Wanli Chi, “Incoherently combining logarithmic aspheric lenses for extended depth of field”, Applied Optics, Vol. 48, No. 28, pp. 5371-5379, 2009.
32.Xi Chen, Dmitry Bakin, Changmeng Liu and Nicholas George, “Optics optimization in high-resolution imaging module with extended depth of field”, Proc. SPIE, Vol. 7061, pp. 706103-1-706103-12. 2009.
33.Eyal Ben Elizer, Zeev Zalevsky, Emanuel Marom and Naim Konforti, “All-optical extended focus imaging system”, Proc. SPIE, Vol. 4829, pp. 194-195, 2003.
34.Eyal Ben Elizer, Zeev Zalevsky, Emanuel Marom and Naim Konforti, “All-optical extended field imaging system”, Journal of Optics A: Pure and Applied Optics, Vol. 5, pp. S164-S169, 2003.
35.Eyal Ben Elizer, Emanuel Marom, Naim Konforti and Zeev Zalevsky, “Experimental realization of an imaging system with an extended depth of field”, Applied Optics, Vol. 44, No. 14, pp. 2792-2798, 2004.
36.I. Raveh, D. Mendlovic and Z. Zalevsky, “Digital method for defocus corrections: experiment results”, Optical Engineering, Vol. 38, No. 10, pp. 1620-1626, 1999.
37.Zeev Zalevsky, Eran Gur, Dina Elkind and David Mendlovic, “Solving the out-of-focus OTF reducing using a phase only filter and fuzzy logic reasoning”, Proc. SPIE, Vol. 4829, pp. 1090-1091, 2003.
38.Zeev Zalevsky, Eran Rossmann and David Mendlovic, “All-optical wavelet transform realization and use for imaging, imaging processing, and increased depth of focus”, Optical Engineering, Vol. 46, No. 8, pp.087001-1-087001-14, 2007.
39.Iftach Klapp and David Mendlovic, “Improvement of matrix condition of hybrid, space variant optics by the means of parallel optics design”, Optics Express, Vol. 17, No. 14, pp. 11673-11689, 2009.
40.Gonzalo Muyo and Andrew R. Harvey, “Wavefront coding for athermalization of infrared imaging systems“, Proc. SPIE, Vol. 5612, pp. 227-235. 2004.
41.Gonzalo Muyo, Andrew R. Harvey and Amritpal Singh, “High performance thermal imaging with a singlet and pupil plane encoding“, Proc. SPIE, Vol. 5987, pp. 59870I-1-59870I-8. 2005.
42.Gonzalo Muyo, Amritpal Singh, Mathias Andersson, David Huckridge and Andrew R. Harvey, “Optimized thermal imaging with a singlet and pupil plane encoding: experimental realization“, Proc. SPIE, Vol. 6395, pp. 63950M-1-63950M-9, 2006.
43.Gonzalo Muyo, Amritpal Singh, Mathias Andersson, David Huckridge, Andrew Wood and Andrew R. Harvey, “Infrared imaging with a wavefront-coded singlet lens“, Optics Express, Vol. 17, No. 23, pp. 21118-21123, 2009.
44.Samir Mezouari and Andrew R. Harvey, “Primary aberrations alleviated with phase pupil filters”, Proc. SPIE, Vol. 4768, pp. 21-31, 2002.
45.Samir Mezouari, Conzalo Muyo and Andrew R. Harvey, “Amplitude and phase filters for mitigation of defocus and third-order aberrations”, Proc. SPIE, Vol. 5249, pp. 238-248, 2004.
46.Mads Demenikov, Ewan Findlay and Andrew R. Harvey, “Miniaturization and simplification of zoom lenses using wavefront coding”, Proc. SPIE, Vol. 7061, pp. 706102-1-706102-7, 2008.
47.Andrew R. Harvey, Gonzalo Muyo and Mads Demenikov, “The principle and roles of hybrid optical/digital codecs in imaging”, Proc. SPIE, Vol. 7113, pp. 71130D-1-71130D-9, 2008.
48.Andrew R. Harvey, Tom Vettenburg, Mads Demenikov, Betrand Lucotte, Gonzalo Muyo, Andrew Wood, Nicholas Bustin, Amritpal Singh and Ewan Findlay, “Digital imaging processing as an integral component of optical design”, Proc. SPIE, Vol. 7061, pp. 706104-1`706104-11, 2008.
49.Gonzalo Muyo and Andrew R. Harvey, “The effect of detector sampling in wavefront-coded imaging systems”, Journal of Optics A: Pure and Applied Optics, Vol. 11, pp. 1-9, 2009.
50.Tom Vettenburg, Andrew Wood, Nicholas Bustin and Andrew R. Harvey, “Optimality of pupil-phase profiles for increasing the defocus tolerance of hybrid digital-optical imaging systems”, Proc. SPIE, Vol. 7429, pp. 742903-1-742903-7. 2009.
51.Mads Demenikov and Andrew R. Haravey, “A technique to remove image artefacts in optical systems with wavefront coding”, Proc. SPIE, Vol. 7429, pp. 74290N-1-7429N-12, 2009.
52.Samir Mezouari and Andrew R. Haravey, “Phase pupil functions for reduction of defocus and spherical aberrations”, Optics Letters, Vol. 28, No.10, pp. 771-773, 2003.
53.Samir Mezouari and Andrew R. Haravey, “Combined amplitude and phase filters for increased tolerance to spherical aberration”, Journal of Modern Optics, Vol. 50, No.14, pp. 2213-2220, 2003.
54.Gonzalo Muyo and Andry R. Haravey, “Decomposition of the optical transfer function: wavefront coding imaging systems”, Optics Letters, Vol. 30, No.20, pp. 2715-2717, 2005.
55.M. Dirk Robinson and David G. Stork, “Joint design of lens systems and digital image processing”, Proc. SPIE, Vol. 6342, pp. 64321G1-6342G10, 2006.
56.David G. Stork and M. Dirk Robinson, “Theoretical foundations for joint digital-optical analysis of electro-optical imaging systems”, Applied Optics, Vol. 47, No. 10, pp. B64-B75, 2008.
57.M. Dirk Robinson and David G. Stork, “Joint digital-optical design of imaging systems for grayscale objects”, Proc. SPIE, Vol. 7100, pp. 710011-1-710011-9, 2008.
58.M. Dirk Robinson and David G. Stork, “End-to-end compensation of digital-optical imaging systems”, Proc. SPIE, Vol. 6288, pp. 628809-1-628809-12, 2006.
59.M. Dirk Robinson, Guotong Feng and David G. Stork, “Spherical coded imagers: Improving lens speed, depth-of-field, and manufacturing yield through enhanced spherical aberration and compensating image processing”, Proc. SPIE, Vol. 7429, pp. 74290M-1-74290M-12, 2009.
60.Guotong Feng, Mohammed Shoaib and M. Dirk Robinson, “Low-complexity digital filter geometry for spherical coded imaging systems”, Proc. SPIE, Vol. 7429, 742902-1-742902-11, 2009.
61.Qingguo Yang, Liren Liu and Jianfeng Sun, “Optimized phase pupil masks for extended depth of field”, Optics Communications, Vol. 272, pp.56-66, 2006.
62.Feng Yan, Li-gong Zheng and Xue-jun Zhang, “Image restoration of an off-axis three-mirror anastigmatic optical system with wavefront coding technology”, Optical Engineering, Vol. 47, No.1, pp. 017006-1-017006-8, 2008.
63.Feng Yan, Li-gong Zheng and Xue-jun Zhang, “Design of an off-axis three-mirror anastigmatic optical system with wavefront coding technology”, Optical Engineering, Vol. 47, No.6, pp. 063001-1-063001-10, 2008.
64.Feng Yan and Xuejun Zhang, “Optimization of an off-axis three-mirror anastigmatic system with wavefront coding technology based on MTF invariance”, Optics Express, Vol. 17, No.19, pp. 16809-16819, 2009.
65.Hui Zhao and Yingcai Li, “Performance of an improved logarithmic phase mask with optimized parameters in a wavefront-coding system”, Applied Optics, Vol. 49, No.2, pp. 229-238, 2010.
66.Feng Yan and Xuejun Zhang, “The effect on tolerance distributing of an off-axis three mirror anastigmatic optical system with wavefront coding technology”, Proc. SPIE, Vol. 7068, pp. 706807-1-706807-14, 2008.
67.Feng Zhou, Ran Ye, Guangwei Li, Haitao Zhang and Dongsheng Wang, “Optimized circular symmetry phase mask to extend the depth of focus”, Journal of Optics Society of America A, Vol. 26, No. 8, pp. 1889-1895, 2009.
68.Feng Zhou, Guangwei Li, Haitao Zhang and Dongsheng Wang, “Rational phase mask to extend the depth of field in optical-digital hybrid imaging systems”, Optics Letters, Vol. 34, No. 3, pp. 380-382, 2009.
69.Hua Lei, Huajun Feng, Xiaoping Tao and Zhihai Xu, “Imaging characteristic of a wavefront coding system with off-axis aberrations”, Applied Optics, Vol. 45, No. 28, pp. 7255-7263, 2006.
70.Tingyu Zhao, Zi Ye, Wenzi Zhang, Yanping Chen and Feihong Yu, “Wide viewing angle skewed effect of the point spread function in a wavefront coding system”, Optics Letters, Vol. 32, No. 10, pp.1220-1222, 2007.
71.Hui Zhao, Qi Li and Huajun Feng, “Improved logarithmic phase mask to extend the depth of field of an incoherent imaging system”, Optics Letters, Vol. 33, No. 11, pp. 1171-1173, 2008.
72.Hui Zhao, Huajun Feng and Qi Li, “Research on design of optimum phase mask for wave-front coded imaging system”, Proc. SPIE, Vol. 6834, pp. 68342P1-68342P12, 2007.
73.Wenzi Zhang, Zi Ye, Tingyu Zhao, Yanping Chen and Feihong Yu, “Point spread function characteristics analysis of the wavefront coding system”, Optics Express, Vol. 15, No. 4, pp. 1543-1552, 2007.
74.Wenzi Zhang, Zi Ye, Tingyu Zhao, Yanping Chen and Feihong Yu, “Ray aberrations analysis for phase plates illuminated by off-axis collimated beams”, Optics Express, Vol. 15, No. 6, pp. 3031-3046, 2007.
75.Tingyu Zhao, Zi Ye, Wenzi Zhang, Weiwei Huang, and Feihong Yu, “Field depth extension of 2D barcode scanner based on wavefront coding and projection algorithm”, Proc. SPIE, Vol. 6837, pp. 687311-1-687311-8, 2007.
76.Hui Zhao, Yingcai Li, Huajun Feng, Zhihai Xu and Qi Li, “Cubic sinusoidal phase mask: Another choice to extend the depth of field of incoherent imaging system”, Optics & Laser Technology, Vol. 42, pp. 561-569, 2010.
77.Hui Zhao and Yingcai Li, “Optimized sinusoidal phase mask to extend the depth of field of an incoherent imaging system”, Optics Letters, Vol. 35, No. 2, pp. 267-269, 2010.
78.Eric J. Tremblay, Ronald A. Stack, Morrison and Joseph E. Ford, “Annular folded optics imager”, Proc. SPIE, Vol. 6232, pp. 62320R1-62320R9, 2006.
79.Eric J. Tremblay, Ronald A. Stack, Morrison and Joseph E. Ford, “Arc-section annular folded optics imager”, Proc. SPIE, Vol. 6668, pp. 666807-1-666807-10, 2007.
80.Eric J. Tremblay, Ronald A. Stack, Rick L. Morrison and Joseph E. Ford, “Ultrathin cameras using annular folded optics”, Applied Optics, Vol. 46, No. 4, pp. 463-471, 2007.
81.Eric J. Tremblay, Ronald A. Stack, Rick L. Morrison and Joseph E. Ford, “Ultrathin four-reflection imager”, Applied Optics, Vol. 48, No. 2, pp. 343-354, 2009.
82.Eric J. Tremblay, Joel Rutkowski, Inga Tamayo, Paulo E. X. Silveira, Ronald A. Stack, Rick L. Morrison, Mark A. Neifeld, Yeshaiyahu Fainman and Joseph E. Ford, “Relaxing the alignment and fabrication tolerances of thin annular folded imaging systems using wavefront coding”, Applied Optics, Vol. 46, No. 27, pp. 6751-6758, 2007.
83.Hsiao-Yue, Tsao, Ludovic Angot and Chir-Weei Chang, “Characterization of cubic phase modulation for extended depth of field imaging”, ODF2008.
84.Yung-Lin Chen, Kuang-Vu Chen, Hsiao-Yue Tsao and Chir-Weei Chang, “Simulation study of a wavefront coded compact camera lens system”, ODF2008.
85.Chuan-Chung Chang, Ludovic Angot, Hsiao-Yue Tsao, Chir-Weei Chang and Cheng-Chung, Lee, “Off-axis performance analysis of wavefront coded imaging system”, Optical Review, Vol. 16, No.2, pp. 126-128, 2009.
86.Hsin-Yueh Sung, Sidney S. Yang and Horng Chang, “Software lens compensation applied to athermalization of infrared imaging systems”, Optical Review, Vol. 16, No.3, pp. 313-317, 2009.
87.Hsin-Yueh Sung, Sidney S. Yang and Horng Chang, “Design of mobile phone lens with extended depth of field based on point-spread function focus invariance”, Proc. SPIE, Vol. 7061, pp. 706107-1-706107-11, 2008.
88.Chir-Weei Chang and Yung-Lin Chen, “Using liquid lens in wavefront coded imaging system”, Proc. SPIE, Vol. 7061, pp. 70610O-1-70610O-8, 2008.
89.Po-Chang Chang, Chin-Hao Liu, Chir-Weei Chang, Chuan-Chung Chang and Ludovic Angot, “Digital decoding design for phase coded imaging system”, Proc. SPIE, Vol. 7443, pp. 74431A1-74431A9, 2009.
90.Chin-Cheng Hsu, Wen-Hung Cheng, Chin-Tsia Liang and Chir-Weei Chang, “Study on manufacturing process of free-form cubic phase plate”, ODF2008.
91.Chuan-Chung Chang and Cheng-Chung Lee, “Effect of surface manufacturing error of cubic phase mask in wavefront coding system”, Optics Express, Vol. 17, No. 8, pp. 6245-6251, 2009.
92.M. Morn and E. Wolf, Principle of Optics, Pergamon, 1989.
93.Chuan-Chung, Chang and Cheng-Chung Lee, “Effect of spoke surface error on phase mask in computational imaging system”, Journal of Modern Optics, Vol. 57, No.4, pp. 316-324, 2010.
94.Joseph W. Goodman, Introduction to Fourier Optics, Stanford University, 1968.
95.Anita Kotha and James E. Harvey, “Scattering effect of machined optical surfaces”, Proc. SPIE, Vol. 2541, pp. 54-65, 1995.
96.James E. Harvey and Anita Kotha, “Scattering effects from residual optical fabrication errors”, Proc. SPIE, Vol. 2576, pp.155-174, 1995.
97.James E. Harvey and Cynthia L. Vernold, “Transfer gunction characterization of scattering surfaces: revisited”, Proc. SPIE, Vol. 3141, pp. 113-127, 1997.
98.Richard N. Youngworth and Byran D. Stone, “ Simple estimates for the effect of mid-spatial-frequency surface errors on image quality”, Applied Optics, Vol. 39, No. 13, pp. 2198-2209, 2000.
99.en.wikipedia.org/wiki/Strehl_ratio
100.Samir Mezouari, Gonzalo Muyo and Andrew R. Harvey, “Circular symmetric phase filters for control of primary third-order aberrations: coma and astigmatism”, Journal of Optics Society of America A, Vol. 23, No. 5, pp. 1058-1062, 2006.
101.www.mathworks.com/access/helpdesk/help/toolbox/images/corr2.html
102.www.ccd.com/ccd103.html
103.en.wikipedia.org/wiki/Bayer_filter
104.www.mathworks.com/access/helpdesk/help/toolbox/images/deconvwnr.html
105.www.mathworks.com/access/helpdesk/help/toolbox/images/deconvlucy.html
106.www.mathworks.com/access/helpdesk/help/toolbox/images/deconvreg.html
107.www.mathworks.com/access/helpdesk/help/toolbox/images/deconvblind.html
108.Watson A.B. Digital Images and Human Vision, (MIT Press, 1993), Chap. 15
109.Chang, C. W., Chen, Y. L., Chang, C. C., and Chen, P. C. “Phase coded optics for computational imaging systems” in SPIE Photonics Europe 2010.
110.Chang, C. C. and Lee C. C. "Mid-frequency Effect of Phase Mask in Computational Imaging System" in 7th Internal Conference on Optics-photonics Design & Fabrication ODF’10 (2010), Japan.
111.Tseng, C. Y., Wang, S. J., Chang, C. W., Chen, P. C., Chang, C. C., Chen, Y. A., “Digital Image Restoration for Phase-Coded Imaging Systems” in SPIE Photonics Europe 2010.
指導教授 李正中(Cheng-Chung Lee) 審核日期 2010-6-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明