![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:29 、訪客IP:18.191.240.94
姓名 王一大(Ita Wang) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 含氫非晶質碳薄膜的拉曼光譜特性研究
(Characteristics of Raman Spectra of Hydrogenated Amorphous Carbon Films)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文主要是利用拉曼光譜儀及近紅外光-可見光-紫外光(UV-VIS-NIR)光譜儀,來研究以電漿輔助化學氣相沉積 (Plasma Enhanced Chemical Vapor Deposition,PECVD) 方式,製成的含氫非晶質碳(hydrogenated amorphous carbon)薄膜樣品之拉曼光譜、可見光穿透率等特性。我們實驗用的樣品,是由三種反應氣體(Precursor Gas)[ C6H6 、HMDS (六甲基二矽氮烷,分子式為C6H18Si2NH)、HMDSO(六甲基二矽氧烷,分子式為C6H18Si2O)],以不同比例、不同鍍膜時間(Deposition Time) 製造而成的。由實驗結果我們發現:以C6H6為反應氣體的樣品,其碳的sp2鍵結(石墨的結構)含量最多,故可見光穿透率最小(鍍膜時間為90min時的平均光穿透率約為10%);以HMDS為反應氣體的樣品,其碳的sp2鍵結(石墨的結構)含量最少,故可見光穿透率最大(鍍膜時間為90min時的平均光穿透率約為60%)。以C6H6為反應氣體的樣品的相對光學能隙最小[平均值約為1.0(ev)],而以HMDS為反應氣體的樣品的相對光學能隙則是最大[平均值約為2.1(ev)]。三種樣品(以HMDS為反應氣體的樣品、以HMDSO為反應氣體的樣品、以HMDS+HMDSO為反應氣體的樣品)的光學能隙和被扭曲的碳的sp3鍵結含量,皆會隨著鍍膜時間的增加(由60min到90min)而增加。
摘要(英) In this thesis,we use mainly the Raman spectroscopy and UV-VIS-NIR spectroscopy to study the characteristics of hydrogenated amorphous carbon thin films which are made by the Plasma Enhanced Chemical Vapor Deposition (PECVD) method. These films were made in different ratios of precursor gas[C6H6 ,HMDS(C6H18Si2NH) and HMDSO(C6H18Si2O)] and deposition time(30min,60min,and 90min).The experimental results are as follows: films which use C6H6 as its precursor gas contain most sp2 bondings of carbon,as a result, have the lowest transmittance of visual light(the average transmittance is about 10% in deposition time of 90min); films which use HMDS as its precursor gas contain least sp2 bondings of carbon,as a result, have the highest transmittance(the average transmittance is about 60% in deposition time of 90min). Films which use C6H6 as its precursor gas have the smallest relative optical gap[the average value is about 1.0 (e.v.)],and films which use HMDS as its precursor gas have the largest relative optical gap[the average value is about 2.1 (e.v.)].Films which use HMDS,HMDSO,and HMDS+HMDSO respectively as its precursor gas have both its relative optical gap and sp3 bondings of carbon increased as deposition time increases.
關鍵字(中) ★ 拉曼光譜
★ 非晶質碳薄膜
★ 穿透率
★ 光學能隙關鍵字(英) ★ transmittance
★ optical gap
★ amorphous carbon film
★ Raman spectrum論文目次 目錄………………………………………………………………VII
摘要………………………………………………………………I
Abstract…………………………………………………………III
圖目錄……………………………………………………………IX
表目錄……………………………………………………………XI
第一章 緒論…………………………………………………… 1
第二章 文獻回顧與基本理論………………………………… 4
2-1文獻回顧………………………………………… 4
2-1-1非晶質碳的分類………………………… 4
2-1-2 石墨與鑽石的特徵峰………………… 5
2-2基本理論………………………………………… 8
2-2-1拉曼散射………………………………… 8
2-2-2光學能隙…………………………………12
第三章 實驗………………………………………………… 14
3-1 樣品製作………………………………………… 14
3-2實驗儀器………………………………………… 16
3-2-1拉曼光譜儀…………………………… 16
3-2-2 UV-VIS-NIR光譜儀…………………… 25
3-2-3 X光繞射分析儀…………………………27
3-3 實驗過程………………………………………… 29
3-3-1拉曼光譜儀……………………………… 29
3-3-2 UV-VIS-NIR光譜儀………………………31
3-3-3 X光繞射分析儀………………………… 32
第四章 實驗結果與討論…………………………………… 33
4-1 實驗結果……………………………………… 33
4-2 討論…………………………………………… 57
4-2-1 實驗分析之結果……………………… 57
4-2-2 樣品中鑽石晶粒之變化……………… 60
第五章 結論………………………………………………… 63
參考文獻……………………………………………………… 64
圖目錄…………………………………………………………IX
圖2-1 非晶質碳的三相圖………………………………… 4
圖2-2 Tuinstra等人的單晶石墨拉曼光譜……………… 6
圖2-3 Tuinstra等人的微晶石墨拉曼譜………………… 7
圖2-4 拉曼光譜示意圖…………………………………… 8
圖2-5 拉曼散射原理示意圖……………………………… 10
圖3-1 顯微拉曼光譜儀示意圖…………………………… 17
圖3-2 90-05氬離子氣體雷射…………………………… 18
圖3-3 Jobin Yvon U1000型全向式雙光柵單色儀……… 19
圖3-4 受激輻射、光子的吸收、自發輻射原理示意圖… 21
圖3-5 雷射原理示意圖…………………………………… 23
圖3-6 雙光柵單色儀原理示意圖………………………… 24
圖3-7 Cary 5E型UV-VIS光譜儀………………………… 26
圖3-8 布拉格繞射示意圖………………………………… 27
圖3-9 D/Max 3C X光繞射分析儀………………………… 28
圖3-10 顯微鏡……………………………………………… 29
圖4-1~圖4-3 可見光光譜……………………………… 33、34
圖4-4~圖4-21 樣品之拉曼光譜……………………… 36~44
圖4-22 樣品之G peak圖………………………………… 49
圖4-23~圖4-29 XRD光譜……………………………… 50~53
圖4-30 Tamor 等人的光學能隙圖………………………… 54
圖4-31 樣品的相對光學能隙圖…………………………… 55
圖4-32 以C6H6+HMDS(60min)為反應氣體的樣品的拉曼光譜…61
圖4-33 以HMDS+HMDSO(60min)為反應氣體的樣品的拉曼光譜..61
表目錄……………………………………………………………XI
表3-1 實驗樣品表……………………………………………15
表4-1~表4-3 拉曼光譜的數值結果……………………45~47
表4-4 實驗分析後的結果…………………………………… 56
表4-5 修正後的實驗分析後的結果………………………… 59
參考文獻 1.F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf,“Man-Made Diamonds.Nature”, 51-55,176(4471)(1955).
2.A. Grill, “Electrical and optical properties of diamond-like carbon Thin Solid Films”, 189-193 ,355–356(1 ) (1999).
3.J. Robertson ,“Electronic structure of diamond-like carbon”,Diamond and Related Materials, 212-218,6(2-4) (1997).
4.L.Y. Huang, J. Lu, and K.W. Xu, “Investigation of the relation between structure and mechanical properties of hydrogenated diamond-like carbon coatings prepared by PECVD”. Materials Science and Engineering A,45-53 373(1-2) (2004).
5.G. Reisel, B. Wielage, S. Steinhäuser and H. Hartwig,“DLC for tools protection in warm massive forming”, Diamond Relat. Mater., 1024-1029 12(3-7) (2003).
6.G. Dearnaley. and J.H. Arps, “Biomedical applications of diamond-like carbon (DLC) coatings: A review”,Surface and Coatings Technology, 2518-2524 ,200(7) (2005).
7.V.G. Litovchenko. and N.I. Klyui,“Solar cells based on DLC film – Si structures for space application”,Sol. Energy Mater. Sol. Cells,55-70, 68(1) (2001).
8.A. Erdemir,“The role of hydrogen in tribological properties of diamond-like carbon films”,Surface and Coatings Technology, 292-297,146-147(2001).
9.A. Tibrewala, E. Peiner, R. Bandorf , S. Biehl, H. Lüthje, “Transport and optical properties of amorphous carbon and hydrogenated amorphous carbon films”, Applied Surface Science,5387-5390, 252(15) ( 2006).
10.A.C. Ferrari. and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”,Physical Review B,14095-14107, 61(20) ( 2000).
11.F. Tuinstra and J.L. Koenig,“Raman Spectrum of Graphite”,Journal of Chemical Physics, 1126-1130, 53(3)(1970).
12.摘自輔仁大學之“高等光學實驗手冊”
13.D. Mardare, M. Tasca, M. Delibas, G.I. Rusu,“On the structural properties and optical transmittance of TiO2 r.f. sputtered thin films”,Applied Surface Science, 200-206,156(1-4) (2000).
14. H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, F. Levy, “Electrical and Optical-Properties of Tio2 Anatase Thin-Films”,Journal of Applied Physics,2042-2047,75(4) (1994).
15.T.C. Chieu, M.S. Dresselhaus, and M. Endo,“Raman Studies of Benzene-Derived Graphite Fibers”,Physical Review B, 5867-5877,26(10) (1982).
16.L.Y. Chen and F.C.N. Honga,“Diamond-like carbon nanocomposite films”. Applied Physics Letters, 3526-3528,82(20)( 2003).
17.M.A. Tamor and W.C. Vassell,“Raman Fingerprinting of Amorphous-Carbon Films”,Journal of Applied Physics, 3823-3830, 76(6) (1994).
18.T. Kobayashi, T. Hirajima, Y. Hiroi and M. Svojtka,“Determination of SiO2 Raman spectrum indicating the transformation from coesite to quartz in Gföhl migmatitic gneisses in the Moldanubian Zone, Czech Republic”,Journal of Mineralogical and Petrological Sciences ,105-111,103(2008).
19.M. Yoshikawa, Y. Mori, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, “Raman scattering from diamond particles”, Appl. Phys. Lett., 3114-3116, 62(1993).
20.L.C. Nistor, J.V. Landuyt, V.G. Ralchenko, E.D. Obraztsova and A.A. Smolin.,“Nanocrystalline diamond films: Transmission electron microscopy and Raman spectroscopy characterization”, Diamond and Related Materials, 159-168, 6(1) (1997).
指導教授 李正中(Cheng-Chung Lee) 審核日期 2010-6-24 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare