所別:數學系碩士班 甲組(一般生) 科目:線性代數 共 2 頁 第

數學系碩士班 甲組(在職生) 數學系碩士班 乙組(一般生)

本科考試禁用計算器

*請在試卷答案卷(卡)內作答

- 1. Dimension computation (You need to explain your answers).
 - (a) (10 %) Let $\ell_i(x_1, \ldots, x_n) = \sum_{j=1}^n a_{ij} x_j$, where $a_{ij} \in \mathbb{R}$, $1 \le i \le m, 1 \le j \le n$ and let $W = \{(b_1, \ldots, b_m) \in \mathbb{R}^m \mid \sum_{i=1}^m b_i \ell_i = 0\}$ with $\ell_i = \ell_i(x_1, \ldots, x_n)$. Let

$$\mathbf{N} := \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid \ell_i(x_1, \ldots, x_n) = 0, i = 1, \ldots, n\}.$$

Express the dimension of N in terms of m, n and dim W.

(b) (10%) Let V and W be finite dimensional vector space over a field F. Let S be a nonempty subset of V. Suppose that the subspace spanned by S has dimension d. Denote the space of linear transformations from V to W by $\mathcal{L}(V,W)$ and set

$$U_S = \{ T \in \mathcal{L}(V, W) \mid T(v) = \mathbf{0}_W \text{ for all } v \in S \}$$

where $\mathbf{0}_W$ is the zero vector of W. Note that U_S is a subspace of $\mathcal{L}(V,W)$. Express the dimension of U_S in terms of dim V, dim W and d.

- 2. Let V and W be finite dimensional vector spaces over a field F. For given linear transformations $f:V\to W$ and $g:W\to V$ let the linear transformation $\Phi:V\oplus W\to V\oplus W$ be defined by $\Phi:V\oplus W=V\oplus W$ be defined by
 - (a) (8 %) Show that Φ is one to one if and only if both f and g are one to one. In this case, is it true that both f and g are isomorphisms?
 - (b) (12 %) Prove or disprove that $rank(\Phi) = rank(f) + rank(g)$ where for a linear transformation L its rank is denoted by rank(L).
- 3. Let the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -9 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}.$$

- (a) (15 %) Find a Jordan canonical form J of A and an invertible matrix P such that $P^{-1}AP=J$.
- (b) (10 %) Consider $\mathcal{A} = \{A^n \mid n = 0, 1, 2, ...\}$ and let $\mathrm{Span}(\mathcal{A})$ be the subspace of $M_{n \times n}(\mathbb{R})$ spanned by \mathcal{A} over the field of real numbers \mathbb{R} . Determine the dimension of $\mathrm{Span}(\mathcal{A})$.
- 4. (a) (5 %) Is it true that every finite dimensional inner product space has an orthogonal basis? Explain your answer.
 - (b) (15 %) Let $N \subset \mathbb{R}^5$ be the set of solutions to the following system of homogeneous linear equations.

$$x_1 + x_3 = 0$$

$$x_1 + x_2 + x_3 + x_4 + x_5 = 0$$

$$-x_1 + 2x_2 - x_3 + x_4 = 0$$

$$2x_1 + 3x_2 + 2x_3 + 2x_4 + x_5 = 0$$

Recall that the standard inner product (the dot product) on \mathbb{R}^n is given by $\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^n u_i v_i$ for $\mathbf{u} = (u_1, \dots, u_n)$ and $\mathbf{v} = (v_1, \dots, v_n)$. Let \mathbf{N}^{\perp} be the orthogonal complement of \mathbf{N} in \mathbb{R}^5 equipped with the standard inner product. Give an orthogonal basis for \mathbf{N}^{\perp} .

國立中央大學100學年度碩士班考試入學試題卷

所別:數學系碩士班 甲組(一般生) 科目:線性代數 共 2 頁 第 2 頁

數學系碩士班 甲組(在職生) 數學系碩士班 乙組(一般生)

本科考試禁用計算器

*請在試卷答案卷(卡)內作答

5. (15 %) Fix a matrix $A \in M_{n \times n}(\mathbb{R})$ and let $T : M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$ be the linear operator defined by T(M) = AM for all $M \in M_{n \times n}(\mathbb{R})$. Let f(x) be the characteristic polynomial of A and let $f_T(x)$ be the characteristic polynomial of A. Prove that $f_T(x) = f(x)^n$.

