參考文獻 |
1 中國土木水利工程學會,混凝土工程設計規範與解說,科技圖書股份有限公司,台北(2007)。
2 內政部營建署編輯委員會,建築物基礎構造設計規範,內政部營建署營建雜誌,台北(2001)。
3 內政部營建署編輯委員會,建築物耐震設計規範與解說,內政部營建署營建雜誌,台北(2005)。
4 日本道路協會,樁基礎設計便覽,日本道路協會,東京(1992)。
5 日本道路協會,道路橋示方書‧同解說,Ⅳ下部構造編,日本道路協會,東京(2002)。
6 日本道路協會,道路橋示方書‧同解說,Ⅴ耐震設計編,日本道路協會,東京(2002)。
7 余書維,「遺傳演算法則於群樁低價化設計之應用」,碩士論文,國立中央大學土木工程系,中壢(2003)。
8 吳明賢,「應用遺傳演算法於群樁基礎低價化設計」,碩士論文,國立中央大學土木工程系,中壢(2001)。
9 吳朗益,「應用Discrete Lagrangian Method 於群樁基礎低價化設計」,碩士論文,國立中央大學土木工程系,中壢(2001)。
10 李世炳、鄒忠毅,「簡介導引模擬退火法及其應用」,物理雙月刊,第廿四卷,第二期,第307-319頁(2002)。
11 林大為,「結合模擬退火之改良粒子群演算法於結構最佳化設計的研究」,碩士論文,國立中央大學土木工程系,中壢(2009)。
12 徐文杰,「群樁基礎之最低價設計」,碩士論文,國立中央大學土木工程系,中壢(2000)。
13 梁俊偉,「平行混成多層遺傳演算法應用於幾何非線性結構最佳化設計之研究」,碩士論文,國立中山大學機械工程研究所,高雄(2000)。
14 莊玟珊,「PSO-SA混合搜尋法與其他結構最佳化設計之應用」,碩士論文,國立中央大學土木工程系,中壢(2007)。
15 程厚捷,「混合差值進化法於苯乙烯自由離子聚合反應模式之參數估計」,碩士論文,國立中正大學化學工程研究所,嘉義(2002)。
16 黃志榮,「全套管基樁基礎初選模式之最佳化研究」,碩士論文,國立中央大學土木工程系,中壢(2006)。
17 楊克己、韓理安,樁基工程,人民交通出版社,北京(1997)。
18 劉向邦,「以和諧搜尋演算法為基礎之混合式全域搜尋演算法求解含凹形節線成本最小成本轉運問題之研究」,碩士論文,國立中央大學土木工程系,中壢(2008)。
19 劉金礪,「群樁橫向承載力的分項綜合效應係數計算法」,岩土工程學報,第十四卷,第三期,第9-19頁(1992)。
20 鍾明劍,「樁基礎最佳化設計之研究」,博士論文,國立中央大學土木工程系,中壢(2006)。
21 羅冠君,「基於和聲搜尋法與離散拉格郎日法之混合演算法於結構最佳化設計的研究」,碩士論文,國立中央大學土木工程系,中壢(2008)。
22 Alatas, B., “Chaotic harmony search algorithms,” Applied Mathematics and Computation, Vol. 216, No. 9, pp. 2687-2699 (2010).
23 Balamurugan, R., and Subramanian, S., “Hybrid integer coded differential evolution - dynamic programming approach for economic load dispatch with multiple fuel options,” Energy Conversion and Management, Vol. 49, No. 4, pp. 608-614 (2008).
24 Cai, Z., Gong, W., Ling, C.X., and Zhang, H., “A Clustering-based Differential Evolution for Global Optimization,” Applied Soft Computing, Vol. 11, No. 1, pp. 1363-1379 (2011).
25 Chan, C.M., and Wong, K.M., “Structural topology and element sizing design optimization of tall steel frameworks using a hybrid OC-GA method,” Structural and Multidisciplinary Optimization, Vol. 35, No. 5, pp. 473-488 (2008).
26 Chan, C.M., Zhang, L.M., and Ng, J.T.M., “Optimization of pile groups using hybrid genetic algorithms,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 4, pp. 497-505 (2009).
27 Chang, C.F., Wong, J.J., Chiou, J.P., and Su, C.T., “Robust searching hybrid differential evolution method for optimal reactive power planning in large-scale distribution systems,” Electric Power Systems Research, Vol. 77, No. 5-6, pp. 430-437 (2007).
28 Chang, Y.L., “Discussion on lateral pile-loading tests,” Transactions, ASCE, Vol. 102, No. , pp. 272-278 (1937).
29 Chang, Y.P., “An ant direction hybrid differential evolution algorithm in determining the tilt angle for photovoltaic modules,” Expert Systems with Applications, Vol. 37, No. 7, pp. 5415-5422 (2010).
30 Chang, Y.P., and Low, C., “An ant direction hybrid differential evolution heuristic for the large-scale passive harmonic filters planning problem,” Expert Systems with Applications, Vol. 35, No. 3, pp. 894-904 (2008).
31 Chen, J.H., Yang, L.R., and Su, M.C., “Comparison of SOM-based optimization and particle swarm optimization for minimizing the construction time of a secant pile wall,” Automation in Construction, Vol. 18, No. 6, pp. 844-848 (2009).
32 Coelho, L.S., and Bernert, D.L.A., “An improved harmony search algorithm for synchronization of discrete-time chaotic systems,” Chaos, Solitons and Fractals, Vol. 41, No. 5, pp. 2526-2532 (2009).
33 Cruz, I.L.L., Willigenburg, L.G., and Straten, G., “Optimal control of nitrate in lettuce by a hybrid approach - differential evolution and adjustable control weight gradient algorithms,” Computers and Electronics in Agriculture, Vol. 40, No. 1-3, pp. 179-197 (2003).
34 Dorigo, M., Maniezzo, V., and Colorni, A., “The ant system: optimization by a colony of cooperating agents,” IEEE Systems, Man, and Cybernetics Society, Vol. 26, No. 1, pp. 29-41 (1996).
35 Duan , H., Yu, Y., Zhang, X., and Shao, S., “Three-dimension path planning for UCAV using hybrid meta-heuristic ACO-DE algorithm,” Simulation Modelling Practice and Theory, Vol. 18, No. 8, pp. 1104-1115 (2010).
36 Dueck, G., and Scheuer, T., “Threshold Accepting: a general purpose optimization algorithm appeared superior to simulated annealing,” Journal of Computational Physics, Vol. Vol. 90, No. 1, pp. 161-175 (1990).
37 Eberhart, R.C., and Kennedy, J., “A New Optimizer Using Particle Swarm Theory,” Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Vol. , No. , pp. 39-43 (1995).
38 Fesanghary, M., Mahdavi, M., Minary, M.J., and Alizadeh, Y., “Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems,” Computer Methods in Applied Mechanics and Engineering, Vol. 197, No. 33-40, pp. 3080-3091 (2008).
39 Forsati, R., Haghighat, A.T., and Mahdavi, M., “Harmony search based algorithms for bandwidth-delay-constrained least-cost multicast routing,” Computer Communications, Vol. 31, No. 10, pp. 2505-2519 (2008).
40 Geem, Z.W., Kim, J.H., and Loganathan, G.V., “A New Heuristic Optimization Algorithm: Harmony Search,” Simulation, Vol. 75, No. 5, pp. 60-68 (2001).
41 Gong, W., and Cai, Z., “An improved multiobjective differential evolution based on Pareto-adaptive dominance and orthogonal design,” European Journal of Operational Research, Vol. 198, No. 2, pp. 576-601 (2009).
42 He, D., Wang, F., and Mao, Z., “A hybrid genetic algorithm approach based on differential evolution for economic dispatch with valve-point effect,” Electrical Power and Energy Systems, Vol. 30, No. 1, pp. 31-38 (2008).
43 Jaberipour, M., and Khorram, E., “Two improved harmony search algorithms for solving engineering optimization problems,” Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 11, pp. 3316-3331 (2010).
44 Kalinli, A., Cemalacar, M., and Gündüz, Z., “New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization,” Engineering Geology, Vol. 117, No. 1-2, pp. 29-38 (2011).
45 Kaveh, A., and Talatahari, S., “Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures,” Computers and Structures, Vol. 87, No. 5-6, pp. 267-283 (2009).
46 Kennedy, J., and Eberhart, R., “Particle Swarm Optimization,” Proceedings of IEEE International Conference on Neural Networks, Vol. 4, No. , pp. 1942-1948 (1995).
47 Kim, K.N., Lee, S.H., Kim, K.S., Chung, C.K., Kim, M.M., and Lee, H.S., “Optimal pile arrangement for minimizing differential settlements in piled raft foundations,” Computers and Geotechnics, Vol. 28, No. 4, pp. 235-253 (2001).
48 Kim, S.K., Kim, J.Y., Lee, D.H., and Ryu, S.Y., “Automatic optimal design algorithm for the foundation of tower cranes,” Automation in Construction, Vol. 20, No. 1, pp. 56-65 (2011).
49 Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P., “Optimization by Simulated Annealing,” Science, Vol. 220, No. 4598, pp. 671-680 (1983).
50 Leung, Y.F., Klar, A., and Soga, K., “Theoretical Study on Pile Length Optimization of Pile Groups and Piled Rafts,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 2, pp. 319-330 (2010).
51 Liao, T.W., “Two hybrid differential evolution algorithms for engineering design optimization,” Applied Soft Computing, Vol. 10, No. 4, pp. 1188-1199 (2010).
52 Lin, W.Y., “A GA-DE hybrid evolutionary algorithm for path synthesis of four-bar linkage,” Mechanism and Machine Theory, Vol. 45, No. 8, pp. 1096-1107 (2010).
53 Liu, H., Cai, Z., and Wang, Y., “Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization,” Applied Soft Computing, Vol. 10, No. 2, pp. 629-640 (2010).
54 Lu, Y., Zhou, J., Qin, H., Li, Y., and Zhang, Y., “An adaptive hybrid differential evolution algorithm for dynamic economic dispatch with valve-point effects,” Expert Systems with Applications, Vol. 37, No. 7, pp. 4842-4849 (2010).
55 M. Dorigo, “Optimization, Learning and Natural Algorithms,” Ph. D Dissertation, Department of Electronics, Politecnico diMilano, Italy (1992).
56 Mahdavi, M., Fesanghary, M., and Damangir, E., “An improved harmony search algorithm for solving optimization problems,” Applied Mathematics and Computation, Vol. 188, No. 2, pp. 1567-1579 (188).
57 Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., “Equations of Calculation by Fast Computing Machines,” Journal of Chemical Physics, Vol. 6, No. 21, pp. 1087-1092 (1953).
58 Nemati, S., Basiri, M.E., Aghaee, N.G., and Aghdam, M.H., “A novel ACO–GA hybrid algorithm for feature selection in protein function prediction,” Expert Systems with Applications, Vol. 36, No. 10, pp. 12086-12094 (2009).
59 Niknam, T., and Amiri, B., “An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis,” Applied Soft Computing, Vol. 10, No. 1, pp. 183-197 (2010).
60 Omrana, M.G.H., and Mahdavi, M., “Global-best harmony search,” Applied Mathematics and Computation, Vol. 198, No. 2, pp. 643-656 (2008).
61 Onwubolu, G.C., “Design of hybrid differential evolution and group method of data handling networks for modeling and prediction,” Information Sciences, Vol. 178, No. 18, pp. 3616-3634 (2008).
62 Padmini, D., Ilamparuthi, K., and Sudheer, K.P., “Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models,” Computers and Geotechnics, Vol. 35, No. 1, pp. 33-46 (2008).
63 Pan, Q.K., Suganthan, P.N., Tasgetiren, M.F., and Liang, J.J., “A self-adaptive global best harmony search algorithm for continuous optimization problems,” Applied Mathematics and Computation, Vol. 216, No. 3, pp. 830-848 (2010).
64 Pan, Q.K., Wang, L., and Qian, B., “A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems,” Computers & Operations Research, Vol. 36, No. 8, pp. 2498-2511 (2009).
65 Pooyanejad. F., Jaksa, M.B., Kakhi, M., and McCabe, B.A., “Prediction of pile settlement using artificial neural networks based on standard penetration test data,” Computers and Geotechnics, Vol. 36, No. 7, pp. 1125-1133 (2009).
66 Saitoh, M., “Fixed-head pile bending by kinematic interaction and criteria for its minimization at optimal pile radius,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 10, pp. 1243-1251 (2005).
67 Samui, P., “Support vector machine applied to settlement of shallow foundations on cohesionless soils,” Computers and Geotechnics, Vol. 35, No. 3, pp. 419-427 (2008).
68 Sitarz, S., “Ant algorithms and simulated annealing for multicriteria dynamic programming,” Computers & Operations Research, Vol. 36, No. 2, pp. 433-441 (2009).
69 Stephany, S., Becceneri, J.C., Souto, R.P., Camposvelho, H.F., and Silvaneto, A.J., “A pre-regularization scheme for the reconstruction of a spatial dependent scattering albedo using a hybrid ant colony optimization implementation,” Applied Mathematical Modelling, Vol. 34, No. 3, pp. 561-572 (2010).
70 Storn, R., and Price, K., “Differential Evolution - A simple and efficient Heuristic for global optimization over continuous spaces,” Journal of Global Optimization, Vol. 11, No. 4, pp. 341-359 (1997).
71 Truman, K.Z., and Hoback, A.S., “Optimization of steel piles under rigid slab foundations using optimality criteria,” Structural and Multidisciplinary Optimization, Vol. 5, No. 1-2, pp. 30-36 (1992).
72 Valliappan, S., Tandjiria, V., and Khalili, N., “Design of raft-pile foundation using combined optimization and finite element approach,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 23, No. , pp. 1043-1065 (1999).
73 Wang, L., Pan, Q.K., and Tasgetiren, M.F., “Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms,” Expert Systems with Applications, Vol. 37, No. 12, pp. 7929-7936 (2010).
74 Xu, R., Venayagamoorthy, G.K., and Wunsch II, D.C., “Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization,” Neural Networks, Vol. 20, No. 8, pp. 917-927 (2007).
75 Yuan, X., Cao, B., Yang, B., and Yuan, Y., “Hydrothermal scheduling using chaotic hybrid differential evolution,” Energy Conversion and Management, Vol. 49, No. 12, pp. 3627-3633 (2008).
76 Zhang, C., Ning, J., Lu, S., Ouyang, D., and Ding, T., “A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization,” Operations Research Letters, Vol. 37, No. 2, pp. 117-122 (2009).
|