參考文獻 |
[1] T. Thorsen, S. J. Maerkl, and S. R. Quake, "Microfluidic Large-Scale Integration," Science, vol. 298, pp. 580-584, 2002.
[2] S. Haeberle and R. Zengerle, "Microfluidic platforms for lab-on-a-chip applications," Lab Chip, vol. 7, pp. 1094-1110, 2007.
[3] H. A. Stone, A. D. Stroock, and A. Ajdari, "Engineering Flows in small devices: Microfluidics towards a lab-on-a-chip," Annu. Rev. Fluid Mech., vol. 36, pp. 381-411, 2004.
[4] D. L. Chen, C. J. Gerdts, and R. F. Ismagilov, "Using microfluidics to observe the effect of mixing on nucleation of protein crystals," J. Am. Chem. Soc, vol. 127, pp. 9672-9673, 2005.
[5] B. Zheng, J. D. Tice, and R. F. Ismagilov, "Formation of Droplets of Alternating Composition in Microfluidic Channels and Applications to Indexing of Concentrations in Droplet-Based Assays " Analytical Chemistry, vol. 76, pp. 4977-4982, 2004.
[6] N. T. Nguyen and S. T. Wereley., Fundamentals and applications of microfluidics Boston: Artech House, 2006.
[7] G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-373, 2006.
[8] F. Mugele and J.-C. Baret, "Electrowetting: from basics to applications," J. Phys.: Condens. Matter, vol. 17, pp. R705-R774, 2005.
[9] V. Srinivasan, V. K. Pamula, and R. B. Fair, "An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids," Lab Chip, vol. 4, pp. 310-315, 2004.
[10] K. Jensen and A. Lee, "The science and applications of droplets in microfluidics devices, special issue," Lab Chip, vol. 4, pp. 31N-32N, 2004.
[11] D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and Applications of Microfluidics in Biology," Annu. Rev. Biomed. Eng., vol. 4, pp. 261-286, 2002.
[12] H. Bruus, Theoretical Microfluidics: Oxford University Press, 2008.
[13] C.-G. Yang, Z.-R. Xu, and J.-H. Wang, "Manipulation of droplets in microfluidic systems," TrAC Trends in Analytical Chemistry, vol. 29, pp. 141-157, 2010.
[14] F. Brochard, "Motions of droplets on solid surfaces induced by chemical or thermal gradients," Langmuir, vol. 5, pp. 432-438, 1989.
[15] M. L. Ford and A. Nadim, "Thermocapillary migration of an attached drop on a solid surface," Phys. Fluids, vol. 6, pp. 3183-3185, 1994.
[16] M. K. Smith, "Thermocapillary migration of a two-dimensional liquid droplet on a solid surface," J. Fluid Mech., vol. 294, pp. 209-230, 1995.
[17] J. Z. Chen, S. M. Troian, A. A. Darhuber,, and S. Wagner, "Effect of contact angle hysteresis on thermocapillary droplet actuation," J. App. Phys., vol. 97, pp. 014906-1-9, 2005.
[18] X. J. Jiao, X. Y. Huang, N. T. Nguyen, and P. Abgrall, "Thermocapillary actuation of droplet in a planar microchannel," Microfluid Nanofluid, vol. 5, pp. 205-214, 2008.
[19] V. Pratap, N. Moumen, and R. S. Subramanian, "Thermocapillary Motion of a Liquid Drop on a Horizontal Solid Surface," Langmuir, vol. 24, pp. 5185-5193, 2008.
[20] Y. T. Tseng, F. G. Tseng, Y. F. Chen, and C. C. Chieng, "Fundamental studies on micro-droplet movement by Marangoni and capillary effects," Sensors & Actuators: A. Physical, vol. 114, pp. 292-301, 2004.
[21] M. K. Chaudhury and G. M. Whitesides, "How to make water run uphill," Science, vol. 256, pp. 1539-1541, 1992.
[22] M. Gunji and M. Washizu, "Self-propulsion of a water droplet in an electric field," J.Phys. D: Appl. Phys., vol. 38, pp. 2417-2423, 2005.
[23] B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, "Electrochemical principles for active control of liquids on submillimeter scales," Science, vol. 283, pp. 57-60, 1999.
[24] M. G. Pollack, R. B. Fair, and A. D. Shenderov, "Electrowetting-based actuation of liquid droplets for microfluidic applications," Appl. Phys. Lett. , vol. 77, pp. 1725-1726, 2000.
[25] R. Baviere, J. Boutet, and Y. Fouillet, "Dynamics of Droplet Transport Induced by Electrowetting Actuation," Microfluid Nanofluid, vol. 4, pp. 287-294, 2008.
[26] A. E. Gómez, S. Melle, A. A. García, S. A. Lindsay, M. Márquez, P. D. García, M. A. Rubio, S. T. Picraux, J. L. Taraci, T. Clement, D. Yang, M. A. Hayes, and D. GustGomez, "Discrete magnetic microfluidics," App. Phys. Lett., vol. 89, pp. 034106-1-3, 2006.
[27] N. T. Nguyen, K. M. Ng, and X. Huang, "Manipulation of ferrofluid droplets using planar coils," Appl. Phys. Lett., vol. 89, pp. 052509-1-3, 2006.
[28] S. Daniel and M. K. Chaudhury, "Rectified Motion of Liquid Drops on Gradient Surfaces Induced by Vibration," Langmuir, vol. 18, pp. 3404-3407, 2002.
[29] K. Ichimura, S. K. Oh, and M. Nakagawa, "Light - driven Motion of Liquids on a Photoresponsive Surface," Science, vol. 288, p. 1624, 2000.
[30] R. S. Subramanian and R. Balasubramaniam, The Motion of Bubbles and Drops in Reduced Gravity. New York: Cambridge University Press, 2001.
[31] H. Bouasse, Capillarité: phénomènes superficiels: Delagrave, 1924.
[32] T. Young, "An Essay on the Cohesion of Fluids " Philos. Trans. R. Soc. London, vol. 95, pp. 65-87, 1805.
[33] E. B. Dussan V., "The moving contact line: the slip boundary condition," J. Fluid Mech., vol. 77, pp. 665-684, 1976.
[34] E. B. Dussan V., "On the Spreading of Liquids on Solid Surfaces: Static and Dynamic Contact Lines," Annu. Rev. Fluid Mech., vol. 11, pp. 371-400, 1979.
[35] L. Gao and T. J. McCarthy, "Contact Angle Hysteresis Explained," Langmuir, vol. 22, pp. 6234-6237, 2006.
[36] S. Daniel, M. K. Chaudhury, and J. C. Chen, "Fast Drop Movements Resulting from the Phase Change on a Gradient Surface," Science, vol. 291, pp. 633-636, 2001.
[37] D. T. Wasan, A. D. Nikolov, and H. Brenner, "Droplets speeding on surfaces," Science, vol. 291, pp. 605-606, 2001.
[38] E. Lauga, M. P. Brenner, and H. A. Stone, Handbook of Experimental Fluid Dynamics vol. edited by C. Tropea, J. Foss, and A. Yarin. New York: Springer, 2005.
[39] M. E. O'Neill, K. B. Ranger, and H. Brenner, "Slip at the surface of a translating–rotating sphere bisected by a free surface bounding a semi-infinite viscous fluid: Removal of the contact-line singularity," Phys. Fluids, vol. 29, pp. 913-924, 1986.
[40] F. Brochard and P. D. Gennes, "Shear-dependent slippage at a polymer/solid interface-," Langmuir, vol. 8, pp. 3033-3037, 1992.
[41] R. Pit, H. Hervet, and L. Leger, "Direct experimental evidence of slip in hexadecane: solid interfaces," Phys. Rev. Lett., vol. 85, pp. 980-983, 2000.
[42] V. S. J. Craig, C. Neto, and D. R. M. Williams, "Shear-Dependent Boundary Slip in an Aqueous Newtonian Liquid," Phys. Rev. Lett., vol. 87, pp. 054504-1-4, 2001.
[43] Y. Zhu and S. Granick, "Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces," Phys. Rev. Lett., vol. 87, pp. 096105-1-4, 2001.
[44] D. C. Tretheway and C. D. Meinhart, "Apparent fluid slip at hydrophobic microchannel walls," Phys. Fluids, vol. 14, pp. L9-L12, 2002.
[45] E. Bonaccurso, M. Kappl, and H.-J. Butt, "Hydrodynamic Force Measurements: Boundary Slip of Water on Hydrophilic Surfaces and Electrokinetic Effects," Phys. Rev. Lett., vol. 88, pp. 076103-1-4, 2002.
[46] Y. Zhu and S. Granick, "Limits of the Hydrodynamic No-Slip Boundary Condition," Phys. Rev. Lett., vol. 88, pp. 106102-1-4, 2002.
[47] J. Baudry, E. Charlaix, A. Tonck, and D. Mazuyer, "Experimental Evidence for a Large Slip Effect at a Nonwetting Fluid−Solid Interface," Langmuir, vol. 17, pp. 5232-5236, 2001.
[48] C. Cottin-Bizonne, J.-L. Barrat, L. Bocquet, and E. Charlaix, "Low-friction flows of liquid at nanopatterned interfaces," Nature Mater, vol. 2, pp. 237-240, 2003.
[49] C.-H. Choi, K. J. A. Westin, and K. S. Breuer, "Apparent slip flows in hydrophilic and hydrophobic microchannels," Phys. Fluids, vol. 15, pp. 2897-2902, 2003.
[50] P. Joseph and P. Tabeling, "Direct Measurement of the Apparent Slip Length," Phys. Rev. E, vol. 71, pp. 035303-1-4, 2005.
[51] P. Tabeling, "Investigating slippage, droplet breakup, and synthesizing microcapsules in microfluidic systems " Phys. Fluids, vol. 22, pp. 021302-1-7, 2010.
[52] C. L. M. H. Navier, "Memoire sur les lois du mouvement des fluides," Mem. Acad. Sci. Inst., vol. 6, pp. 389-440, 1823.
[53] C. Neto, D. R. Evans, E. Bonaccurso, H. Butt, and V. S. J. Craig, "Boundary slip in Newtonian liquids: a review of experimental studies " Reports Prog. Phys., vol. 68, p. 2859, 2005.
[54] D. C. Tretheway and C. D. Meinhart, "A generating mechanism for apparent fluid slip in hydrophobic microchannels," Phys. Fluids, vol. 16, 2004.
[55] J. L. Barrat and L. Bocquet, "Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface," Faraday Discuss., vol. 112, pp. 119-127, 1999.
[56] L. Joly, C. Ybert, and L. Bocquet, "Probing the Nanohydrodynamics at Liquid-Solid Interfaces Using Thermal Motion," Phys. Rev. Lett., vol. 96, pp. 046101-1-4, 2006.
[57] C.-H. Choi and C.-J. Kim, "Large Slip of Aqueous Liquid Flow over a Nanoengineered Superhydrophobic Surface," Phys. Rev. Lett., vol. 96, pp. 066001-1-4, 2006.
[58] P. Joseph, J.-M. B. C. Cottin-Bizonne, C. Ybert, C. Journet, P. Tabeling, and L. Bocquet, "Slippage of Water Past Superhydrophobic Carbon Nanotube Forests in Microchannels," Phys. Rev. Lett., vol. 97, pp. 156104-1-4, 2006.
[59] J. L. Barrat and L. Bocquet, "Large Slip Effect at a Nonwetting Fluid-Solid Interface," Phys. Rev. Lett., vol. 82, pp. 4671-4674, 1999.
[60] J. B. Brzoska, F. Brochard-Wyart, and F. Rondelez, "Motions of droplets on hydrophobic model surfaces induced by thermal gradients," Langmuir, vol. 9, pp. 2220-2224, 1993.
[61] A. A. Darhuber, J. M. Davis, S. M. Troiana, and W. W. Reisner, "Thermocapillary actuation of liquid flow on chemically patterned surfaces," Phys. Fluids, vol. 15, pp. 1295-1304, 2003.
[62] C. Song, K. Kim, K. Lee, and H. K. Pak, "Themochemical control of oil droplet motion on a solid substrate," Appl. Phys. Lett., vol. 93, pp. 084102-1-3, 2008.
[63] A. A. Darhuber and J. P. Valentino, "Thermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable Microheater Arrays," J. of Microelectromechanical Sys., vol. 12, pp. 873-879, 2003.
[64] L. Lofdahl and M. Gad-El-Hak, "MEMS applications in turbulence and flow control," Prog. Aeosp. Sci. , vol. 35, pp. 101-203, 1999.
[65] J. U. Brackbill, D. B. Kothe, and C. Zemach, "A continuum method for modeling surface tension," J. Comp. Phys, vol. 100, pp. 335-354, 1991.
[66] J. C. Chen, C. W. Kuo, and G. P. Neitzel, "Numerical simulation of thermocapillary nonwetting," Int. J. Heat Mass Transfer, vol. 49, pp. 4567-4576, 2006.
[67] A. K. Tornberg and B. Engquist, "A finite element based level-set method for multiphase flow applications," Comp. Visualization Sci., vol. 3, pp. 93-101, 2000.
[68] S. O. Unverdi and G. Tryggvason, "A front-tracking method for viscous, incompressible, multi-fluid flows," J. Comp. Phys., vol. 100, pp. 25-37, 1992.
[69] S. Chen and G. D. Doolen, "Lattice Boltzmann Method for Fluid Flows," Annu. Rev. Fluid Mech., vol. 30, pp. 329-364, 1998.
[70] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, and S. Zaleski, "Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows," J. Comp. Phys., vol. 152, pp. 423-456, 1999.
[71] D. M. Anderson, G. B. McFadden, and A. A. Wheeler, "Diffuse-Interface methods in fluid mechanics," Annu. Rev. Fluid Mech., vol. 30, pp. 139-165, 1998.
[72] J. A. Sethian and P. Smereka, "Level Set Methods for Fluid Interfaces," Annu. Rev. Fluid Mech., vol. 35, pp. 341-372, 2003.
[73] E. Olsson and G. Kreiss, "A conservative level set method for two phase flow," J. Comp. Phys., vol. 210, pp. 225-246, 2005.
[74] E. Olsson, G. Kreiss, and S. Zahedi, "A conservative level set method for two phase flow II," J. Comp. Phys., vol. 225, pp. 785-807, 2007.
[75] J. Sethian, Level Set Methods and Fast Marching Methods. Cambridge: Cambridge University Press, 1999.
[76] T. W. H. Shue, C. H. Yu, and P. H. Chiu, "Development of a dispersively accurate conservative level set scheme for capturing interface in two-phase flows," J. Comp. Phys., vol. 228, pp. 661-686, 2009.
[77] S. Zahedi, K. Gustavsson, and G. Kreiss, "A conservative level set method for contact line dynamics," J. Comp. Phys., vol. 228, pp. 6361-6375, 2009.
[78] T. Uchiyama, "ALE finite element method for gas-liquid two-phase flow including moving boundary based on an incompressible two-fluid model," Nuclear Engineering and Design, vol. 205, pp. 69-82, 2001.
[79] F. Duarte, R. Gormaz, and S. Natesan, "Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries," Computer Methods in Appl. Mech. Eng., vol. 193, pp. 4819-4836, 2004.
[80] F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass transfer New York: John Wiley and Sons, 2002.
[81] H. Nagai, F. Rossignol, Y. Nakata, T. Tsurue, M. Suzuki, and T. Okutani, "Thermal conductivity measurement of liquid materials by a hot-disk method in short-duration microgravity environments," Mater. Sci. Eng. A vol. 276, pp. 117-123, 2000.
[82] J.-C. Chen and G. H. Chin, "Linear stability analysis of thermocapillary convection in the floating zone," J. Crystal Growth vol. 154, pp. 98-107, 1995.
[83] J. P. Rothstein, "Slip on Superhydrophobic Surfaces," Annu. Rev. Fluid Mech., vol. 42, p. 89, 2010.
[84] M. d. Ruijter, M. V. P. Kölsch, J. De Coninck, and J. P. Rabe, "Effect of temperature on the dynamic contact angle," Colloids Surf., A, vol. 144, pp. 235-243, 1998.
[85] "Mathamatica is the software developed by Wolfram Research, Inc.."
|