![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:17 、訪客IP:18.119.172.58
姓名 葉愛慧(Ai-Hui Yeh) 查詢紙本館藏 畢業系所 生物物理研究所 論文名稱 T細胞受體活化反應之模型
(Modeling T-cell receptor activation)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文提出一個模型來描述T細胞受體的活化反應。T細胞在辨認帶有病毒蛋白質片段的主要組織相容性複合體(agonist pMHC)時,具有高度的專一性、靈敏度,以及能在短時間內迅速反應之特性。在T細胞受體活化反應過程中也需要蛋白質CD45的協助。我們將單一個T細胞受體活化反應過程簡化為一個對於自由的T細胞受體( free TCR) 和TCR-pMHC複合體而言皆為具有可逆修飾作用的反應模型,並且研究kinetic proofreading mechanism及CD45在T細胞受體活化反應中的效用。研究結果顯示,(1)在缺乏CD45時,kinetic proofreading在合理範圍的pMHC濃度下無法幫助T細胞降低出錯率,其主要原因是由於自由的T細胞受體的去活化速率太過緩慢所導致。(2)當有CD45存在時,T細胞受體可加速進行去活化反應。因此當活化反應所經過的步驟較多時,在模擬中self pMHC幾乎很難使T細胞受體達到完全活化的階段。由此可知CD45對於T細胞受體活化反應的專一性而言是不可缺少的。另外,增加活化反應步驟的數目也有助於提高T細胞受體的專一性。(3) 如果在活化反應過程中,未與pMHC形成複合體的T細胞受體不擴散到T細胞與抗原呈現細胞間最近接觸區域之外,則此T細胞受體就有機會能再和pMHC分子產生鍵結並繼續進行其活化反應。藉由這種方式,self pMHC便能夠協助T細胞受體進行活化反應,並有助於提高T細胞受體活化反應之靈敏度與加快活化反應速率。
摘要(英) We propose a model that describes the initial process of T-cell receptor (TCR) activa-
tion. An e cient T cell can recognize agonist pMHC with high speci city, sensitivity,
and speed. The assistance of CD45 is also required for TCR activation. We consider
the simulation for single TCR activation that is simpli ed as a reversible modi cation
levels for both free TCR and TCR-pMHC complex. We discuss the e cacy of kinetic
proofreading mechanism and CD45 in TCR activation. Our study reveals that (i) In
the absence of CD45, kinetic proofreading fails at reasonable pMHC concentrations
due to the slowness of deactivation processes for free TCR. (ii) In the presence of
CD45, TCR can be deactivated quickly. Even when there are few activation steps,
it is di cult that self pMHC fully activate the TCR during the simulation. It means
that CD45 is very essential for the speci city of TCR activation and increasing the
number of activation steps is helpful for TCR speci city. (iii) If a free TCR does not
di use out of the close contact region between the T cell and the antigen-presenting
cell, it can bind with a pMHC and continues to move to higher activation level. That
indicates the possibility for self pMHC to help TCR activation, and it may eventually
explain the sensitivity and speedy of TCR activation.
關鍵字(中) ★ T細胞受體
★ T細胞活化
★ 免疫反應關鍵字(英) ★ immune response
★ CD45
★ TCR activation
★ T-cell receptor論文目次 1 Introduction 1
1.1 Biochemistry of TCR activation . . . . . . . . . . . . . . . . . . . . . 2
2 Background and Simulation Method 7
2.1 Kinetic proofreading mechanism . . . . . . . . . . . . . . . . . . . . . 7
2.2 Kinetic proofreading models of T-cell receptor activation . . . . . . . 11
3 Simulation the activation of a single TCR 15
3.1 Metropolis algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Monte Carlo simulation for a single T cell receptor . . . . . . . . . . 16
3.3 The energy landscape and the rate equations in our model for single
TCR activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Kinetic proofreading and CD45 in our model . . . . . . . . . . . . . . 22
3.5 Parameters in the model . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Result and Discussion 28
4.1 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Possible mechanisms for the sensitivity and speedy of TCR activation 35
5 Summary and Future Work 39
A Lattice Simulation 42
A.1 Simulation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
參考文獻 [1] J. J. Hop eld (1974), Proc. Nat. Acad. Sci. USA 71, 4135-4139.
[2] J. Ninio (1975) Biochimie 57, 587-595.
[3] T. W. McKeithan (1995), Proc. Natl. Acad. Sci. USA 92, 5042-5046.
[4] S. Valitutti, S. Muller, M. Cella, E. Padovan, and A. Lanzavecchia (1995),
Nature 375, 148-151.
[5] O. Dushek, R. Das and D. Coombs (2009), PLoS Computational Biology 5 (11),
e1000578.
[6] J.M. Cruse and R.E. Lewis, Illustrated Dictionary of Immunology, 2nd
ed. (CRC Press LLC, the United States of America, 2002)
[7] E.H. Palacios and A. Weiss (2004), Oncogene 23, 7990-8000.
[8] T. Mustelin and K. Tasken (2003), Biochem. J. 371, 15-27.
[9] M.L. Hermiston, Z. Xu, and A. Weiss (2003), Annual Review Immunology 21,
107-137.
[10] D.J. Irvine, M.A. Purbhoo, M. Krogsgarrd, M.M. Davis (2002), Nature 419,
845-849.
[11] Z Ma, K.A. Sharp, P.A. Janmey, T.H. Finkel (2008), PLoS Biology 6, e43.
[12] Y. Sykulev, M. Joo, I. Vturina, T.J. Tsomides, H.N. Eisen (1996), Immunity 4,
565-571.
[13] M.A. Purbhoo, D.J. Irvine, J.B. Huppa, M.M. Davis (2004), Nature Immunology
5, 524-530.
[14] A.L DeMond, K.D. Mossman, T. Starr, M.L. Distin, and J.T. Groves (2008),
Biophys. J. 94, 3286-3292.
[15] O. Dushek and D. Coombs (2008), Biophys. J. 94, 3447-3460.
[16] S.J. Davis and P.A. van der Merwe (2006), Nature Immunology 7, 803-809.
[17] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller
(1953), J. Chem. Phys. 21, 1087-1092.
[18] M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical
Physics, 2nd corrected ed. (Oxford, New York, Oxford University Press Inc.,
2001)
[19] N.J. Burroughs, Z. Lazic, P.A. van der Merwe (2006), Biophys. J. 91, 1619-1629.
[20] D.C. Wylie, J. Das, and A.K. Chakraborty (2007), Proc. Natl. Acad. Sci. USA
104, 5533-5538.
[21] T.R. Weikl and R. Lipowsky (2004), Biophys. J. 87, 3665-3678.
[22] K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical
Physics, 2nd corrected ed. (Spring-Verlag, Berlin, 1992)
[23] M.N. Artyomov, M. Lis, S. Devadas, M.M. Davis, and A.K. Chakraborty (2010),
Proc. Natl. Acad. Sci. USA 107, 16916-16921.
[24] R.A. Goldsby, T.J. Kindt, B.A. Osborne, and J. Kuby, Immunology, 4th ed.
(W.H. Freeman and Company)
[25] A. Grakoui, S.K. Bromley, C. Sumen, M.M. Davis, A.S. Shaw, P.M. Allen, and
M.L. Dustin (1999), Science 285, 221-226.
指導教授 陳宣毅(Hsuan-Yi Chen) 審核日期 2011-1-28 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare