博碩士論文 983204016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.190.217.76
姓名 區理函(Li-han Ou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 疏水表面披覆兩性雙離子高分子以抑制生物積垢
(Hydrophobic surfaces coated with amphiphilic and zwitterionic polymers for biofouling resistance)
相關論文
★ 老鼠免疫球蛋白IgG2a之位向性固定法—Fc區域的親和性配體設計★ 量子點表面改質與動物細胞標定
★ 以螢光光譜觀測蛋白質吸附於疏水表面後之構型變化與吸附位向★ 利用雙功能吸附基材進行蛋白復性-蛋白吸附狀態對復性的影響
★ 界面聚合之奈米過濾膜的抗氯性研究★ 以螢光光譜探討Indolicidin及其類似物與微脂粒之交互作用
★ 負電性奈米過濾膜之排鹽特性★ 金奈米粒子親水化及與DNA一對一鍵結之探討
★ 以雙重電性表面改質方式製作抗生物吸附之超過濾與奈米過濾膜★ 以表面修飾之材料控制間葉幹細胞貼附及對其往軟骨分化之影響
★ 金奈米粒子與DNA一對一鍵結及其在檢測單一核苷酸變異的應用★ 以三聚氰氯為單體的抗氯型奈米過濾膜
★ 鹼性胜肽抗生素indolicidin及其類似物之溶血作用機制探討★ 蛋白質特定方向固定化-以α-amylase為例
★ Indolicidin及其類似物與微脂粒交互作用之熱力學研究★ 位向性固定化葡萄糖氧化酶之新方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雙離子性材料為一良好的抗蛋白吸附的材料,為了將雙離子性材料以物理披覆方式附著於疏水材質表面,我們必須將合成同時具有雙離子性片段和疏水性片段的高分子。由於將雙離子性單體與疏水性單體進行共聚合十分不易,我們採二甲基乙二胺Dimethylenediamine (DMEA)與高分子Poly (styrene-co-maleic anhydride) (SMA) 或Poly (Maleic anhydride alt 1-octadecene) (MAO)反應的方式合成同時具有雙離子性片段和疏水性片段的高分子SMA-DMEA及MAO-DMEA。 研究目的在於比較這兩種高分子披覆在PVDF超過濾膜上以及烷類自組裝膜上的抗蛋白吸附特性。我們以吸附平衡後液體中蛋白的減少量,來衡量高分子披覆前後PVDF薄膜對牛血清蛋白Bovine Serum Albumin (BSA)與溶菌酶Lysozyme (LYZ)的吸附量;以SPR測量高分子披覆前後,烷類自組裝膜對BSA與溶LYZ的吸附量;又以ELISA與SPR測量高分子披覆前後,fibrinogen在烷類自組裝膜上的吸附程度。ELISA與SPR測量的結果,顯示SMA-DMEA與MAO-DMEA的披覆均可有效降低fibrinogen在烷類自組裝膜上的吸附。實驗結果也顯示,MAO-DMEA高分子在PVDF膜上有較SMA-DMEA高分子更高的披覆量,而無論是MAO-DMEA或SMA-DMEA高分子的批覆,均顯著的降低BSA吸附量至1µg/cm2。而在LYZ吸附實驗中,顯示SMA-DMEA高分子的批覆可有效阻止LYZ的吸附,但MAO-DMEA的披覆對LYZ的抗吸附能力卻不足。SPR的測量顯示MAO-DMEA披覆於烷類自組裝膜上,可大幅降低LYZ的吸附能力至40 ng/cm2,這結果顯示MAO-DMEA高分子披覆於PVDF膜上,之所以無法有效阻止LYZ的吸附,可能是由於MAO的分子量太大(MW 40K),無法有效披覆於PVDF膜內的小孔,因此雖然可以阻擋體積大的BSA,卻無法阻止體積小的LYZ。
我們也進行披覆穩定性的實驗,測試經高分子披覆的PVDF膜,在以去離子水清洗1,5,10次後,對BSA與LYZ的抗吸附能力。結果顯示MAO-DMEA附著於PVDF膜的力量較強,披覆穩定性較佳,因此我們認為,分子量較小的MAO-DMEA高分子,應是良好的抗生物沾黏的披覆材料。
摘要(英) Zwitterionic materials have good property of the anti-adhesion of the protein. In order to take the zwitterionic material coated on hydrophobic surface by physical adsorption, we have to synthesize the polymer both have zwitterionic groups and hydrophobic segments. Because it is difficult to take the zwitterionic groups polymerize with the hydrophobic monomer, we choose the Dimethylenediamine (DMEA) react with the Poly (styrene-co-maleic anhydride) (SMA) or Poly (Maleic anhydride alt 1-octadecene) (MAO) to synthesize a SMA-DMEA and MAO-DMEA polymers both have zwitterionic groups and hydrophobic segments. In this study, we compared the protein adsoprion difference on coated polymer PVDF membrane and coated polymer chip. We used the decreased amount of the protein in solution, to measure the Bovine serum albumin (BSA) and Lysozyme (LYZ) adsorption of the coated polymer PVDF membrane; used the ELISA and SPR to measure the fibrinogen adsorption of the coated undecane-1-thiol chip. It is revealed that coated SMA-DMEA and MAO-DMEA membrane can reduce fibrinogen adosption effectively from the SPR and ELISA’s results. The results also showed the MAO-DMEA polymer has higher coating amount than the SMA-DMEA polymer. Not only MAO-DMEA can reduce the BSA adsopriton to 1µg/cm2, but also SMA-DMEA. In LYZ adsoption experiment, SMA-DMEA polymer can reduce LYZ adsorption effectively, but MAO-DMEA has no good anti-adhesion to LYZ. The SPR’s result showed the coated MAO-DMEA chip can significantly reduce the LYZ adsorption to 40 ng/cm2, from this result we cocluded the MAO-DMEA can’t anti-adhesion to LYZ on membrane because of the MAO-DMEA’ molecular weight is too large(MW 50K), it can’t coat on the small hole in PVDF membrane.
We also do coating stability experiment the result revealed the MAO-DMEA polymer has higher coating property on PVDF membrane than SMA-DMEA polymer. As a result, we think the smaller molecular weight of the MAO-DMEA maybe is excellent antifouling material.
關鍵字(中) ★ 兩性雙離子高分子 關鍵字(英) ★ amphiphilic
★ zwitterionic
論文目次 中文摘要
Abstract
致謝
圖目錄
表目錄
第一章 緒論
1-1研究動機
1-2研究目的
第二章 文獻回顧
2.1仿生雙離子性高分子之抗蛋白質相關研究
2.1.1 Phosphorylcholine類雙離子性高分子
2.1.2 其他人工合成的雙離子性高分子
2.1.2.1 Sulfobetaine類雙離子高分子
2.1.2.2 Carboxybetaine類雙離子高分子
2.1.2.3 Maleic anhydride 與amines 反應之相關研究
2.2高分子合成與表面改質
2.2.1 高分子共聚合法 (Copolymerization method)
2.2.2 表面改質技術
2.3 生物分子與材料表面之交互作用
2.3.1 水與材料表面的交互作用
2.3.2 蛋白質與表面的交互作用
2.3.3 表面電漿共振(Surface Plasmon Resonance, SPR)
2.3.3.1 表面電漿共振原理
2.4蛋白質在不同改質方式的疏水膜上之吸附行為
2.4.1 混參改質膜(Blending)
2.4.2 化學接枝改質膜(Grafting)
第三章 實驗藥品、設備及實驗步驟
3.1 實驗藥品
3.2 實驗設備
3.3 實驗策略
3.3.1 實驗架構
3.3.2 雙離子性高分子(SMA-DMEA)高分子的製備
3.3.3 雙離子性高分子(MAO-DMEA)高分子的製備
3.3.4 SMA-DMEA高分子結構鑑定
3.3.5 MAO-DMEA高分子結構鑑定
3.3.6 SMA-DMEA高分子滴定實驗
3.3.7 疏水表面改質 ( PVDF 膜)
3.3.7.1 SMA-DMEA高分子改質PVDF表面
3.3.7.2 MAO-DMEA高分子改質PVDF表面
3.3.8疏水表面改質 ( chip )
3.3.8.1 SMA-DMEA高分子改質Au chip表面
3.3.8.2 SMA-DMEA高分子改質SPR chip 表面
3.3.8.3 MAO-DMEA高分子改質SPR chip 表面
3.3.9 緩衝液的製備
3.3.9.1 PBS緩衝液的製備
3.3.9.2 醋酸鹽緩衝液的製備
3.3.10 蛋白質溶液的製備
3.3.11 蛋白質吸附實驗
3.3.11.1 PVDF膜的蛋白質貼附實驗
3.3.11.2 Au Chip上的蛋白質貼附實驗ELISA
3.3.11.3 SPR Chip上的蛋白質貼附實驗
3.3.12 PVDF膜上的高分子披覆穩定性實驗
第四章 結果與討論
4.1雙離子性高分子製備
4.2雙離子性高分子鑑定
4.3 SMA-DMEA系列高分子滴定實驗
4.4雙離子性高分子在疏水表面上的吸附
4.4.1 雙離子性高分子於PVDF膜上的吸附
4.4.2 雙離子性高分子於chip上的吸附
4.5 蛋白質吸附實驗
4.5.1 BSA於SMA-DMEA系列表面的吸附測試
4.5.2 BSA於MAO-DMEA系列表面的吸附測試
4.5.3 BSA於SMA-DMEA與MAO-DMEA表面的吸附測試比較
4.5.4 LYZ於SMA-DMEA系列表面的吸附測試
4.5.5 LYZ於MAO-DMEA系列表面的吸附測試
4.5.6 LYZ於SMA-DMEA與MAO-DMEA表面的吸附測試之比較
4.5.7 Fibrinogen 於SMA-DMEA 1:32表面吸附測試
4.5.8 Fibrinogen、LYZ於MAO-DMEA 1:32表面吸附測試
4.6 離子強度對於抗蛋白質吸附能力的影響
4.7 高分子披覆之穩定性實驗
第五章 結論
第六章 參考文獻
參考文獻 1.Ladd, J., Zhang Z., Chen, S., Hower, C. and Jiang, S. Y., Zwitterionic Polymers Exhibiting High Resistance to Nonspecific Protein Adsorption from Human Serum and Plasma, Biomacromolecules, 2008, 9 (5), 1357–1361
2.Wu, CA., Lenhoff, A. M., Electrostatic and Van-Der-Waals contributions to protein adsorption, 2. Modeling of ordered arrays. Langmuir, 1994, 10(10), 3705-3713.
3.Hunter, R., Foundations of Colloid Science, vol. I. Oxford Science Publications, New York, 1989.
4.Ostuni, E., Chapman, R. G., Holmlin, R. E., Takayama, S., Whitesides, G. M., A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 2001, 17, (18), 5605-5620.
5.Holmli,n R. E., Chen, XX., Chapman, R. G., Takayama, S., Whitesides, G. M., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 2001, 17, (9), 2841-2850.
6.Cho, WK., Kong, BY., Choi, IS., Highly efficient non-biofouling coating of zwitterionic polymers: Poly((3-(methacryloylamino)propyl) -dimethyl(3-sulfopropyl)ammonium hydroxide). Langmuir 2007, 23, (10), 5678-5682.
7.Georgiev, G. S., Karnenska, E. B., Vassileva, E. D., Kamenova, I. P., Georgieva, V. T., Iliev, S. B., Ivanov, I. A., Self-assembly, antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules, 2006, 7(4),1329-1334
8.Lewis, A. L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B-Biointerfaces, 2000, 18(3-4), 261-275.
9.Kadoma, Y., Nakabayashi N., Masuhara, E., Yamauchi, J., Synthesis and hemolysis test of polymer containing phosphorylcholine groups. Koubunshi Ronbunshu (Jpn J Polym Sci Technol) 1978,35,423–427
10.Ishihara, K., Ueda, T., Nakabayashi, N., Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polymer Journal 1990, 22, (5), 355-360.
11.Iwasaki, Y., Ishihara, K., Phosphorylcholine-containing polymers for biomedical applications. Analytical and Bioanalytical Chemistry 2005, 381, (3), 534-546
12.Chang, Y., Chen, SF., Zhang, Z., Jiang, SY., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir 2006, 22, (5), 2222-2226.
13.Zhang, Z., Chen, SF., Chang, Y., Jiang, SY., Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Journal of Physical Chemistry B 2006, 110, (22), 10799-10804.
14.Zhang, Z., Chao, T., Chen, SF., Jiang, SY., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 2006, 22, (24), 10072-10077.
15.Cheng, G., Zhang, Z., Chen, SF., Bryers, J. D., Jiang, SY., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 2007, 28, (29), 4192-4199.
16.Azzaroni, O., Brown, A. A., Huck, W. T. S., UCST wetting transitions of polyzwitterionic brushes driven by self-association. Angewandte Chemie-International Edition 2006, 45, (11), 1770-1774.
17.Cheng, N., Brown, A. A., Azzaroni, O., Huck, W. T. S., Thickness-dependent properties of polyzwitterionic brushes. Macromolecules 2008, 41, (17), 6317-6321.
18.Yang, W., Chen, SF., Cheng, G., Vaisocherova, H., Xue, H., Li, W., Zhang, JL., Jiang, SY., Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir 2008, 24,(17), 9211-9214.
19.Chang, Y., Liao, SC., Higuch,i A., Ruaan, RC., Chu, CW., Chen, WY., A Highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for-plasma protein repulsion. Langmuir 2008, 24, (10), 5453-5458.
20.Nagy, J. K., Hoffmann, K., Keyes, M.H., Gray, D.N., Oxenoid, K., Sanders, C.R., Use of amphipathic polymers to deliver a membrane protein to lipid bilayers. FEBS Lett. 2001 Jul 20;501(2-3):115-20
21.Kane, R. S., Deschatelets, Whitesides, G. M., Kosmotropes form the basis of protein-resistant surfaces. Langmuir 2003, 19, (6), 2388-2391.
22.Zhang, Z., Chen, SF., Jiang, SY., Dual-functional biomimetic materials, Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 2006, 7, (12), 3311-3315.
23.Zhang, Z., Vaisocherova, H., Cheng, G., Yang, W., Xue, H., Jiang, SY., Nonfouling Behavior of Polycarboxybetaine-Grafted Surfaces, Structural and Environmental Effects. Biomacromolecules 2008, 9, (10), 2686-2692.
24.Chapman, B., Glow Discharge Process, Wiley, 1980.
25.Grill, A., Cold Plasma in Materials Fabrication. 1994, IEEE.
26.Kita, H., Inada, T., Tanaka, K., Okamoto, K., Effect of photocrosslinking on permeability and permselectivity of gases through benzophenone-containing polyimide, Journal of Membrane Science, 1994, 87, 139-147.
27.Wang, Y., Kim, JH., Choo, KH., Lee, YS., Lee, CH., Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. Journal of Membrane Science, 2000, 169, 269-276.
28.Chiang, Y. C., Low fouling ultrafiltration and nanofiltration membranes fabricated by zwitterionic surface modification, PhD thesis, 2009
29.Vogler, E. A., Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 1998, 74, 69-117.
30.Goertz, M. P., Houston, J. E., Zhu, XY., Hydrophilicity and the viscosity of interfacial water. Langmuir 2007, 23, (10), 5491-5497.
31.Ramsden, J. J., Puzzles and paradoxes in protein adsorption. Chemical Society Reviews, 1995, 24(1), 73-78.
32.Vroman, L., The importance of surfaces in contact phase reactions. Seminars in Thrombosis and Hemostasis, 1987, 13(1), 79-85.
33.Salvagnini, C., Thrombin inhibitors grafting on polyester membranes for the preparation of blood-compatible materials. The doctoral dissertation, Université Catholique de Louvain, Belgium, 2005.
34.Vroman, L., Finding seconds count after contact with blood (and that is all I did). Colloids and Surfaces B, Biointerfaces, 2008, 62, 1-4.
35.Eloy, R., Belleville, J., Biomaterial-blood interaction - Concise encyclopedia of medical & dental materials. Williams, D.F. Ed., Pergamon Press, 1990, 74-85.
36.Morgan, H., Taylor, D. M., A surface plasmon resonance immunosensor based on the streptavidin-biotin complex. Biosensorand Bioelectronics, 1992, 7, 405-410.
37.Boozer, C., Ladd, J., Chen, SF., Jiang, ST., DNA-directed protein immobilization for simultaneous detection of multipleanalytes by surface plasmon resonance biosensor. Analytical Chemistry, 2006, 78(5), 1515-1519.
38.Ladd, J., Boozer, C., Yu., Chen, QM., Homola, S. F., Jiang, JS., DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge. Langmuir, 2004, 20(19), 8090-8095.
39.Myszka, D.G., Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Current Opinion in Biotechnology, 1997, 8(1), 50-57.
40.Myszka, D. G., Jonsen,M. D., Graves, B. J., Equilibrium analysis of high affinity interactions using BIACORE. Analytical Biochemistry, 1998, 265(2), 326-330.
41.許志銘, 表面電漿共振感測儀用於抗體與抗原結合之動力學分析. 碩士論文, 國立清華大學生醫工程與環境科學系, 2006.
42.Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Physik, 1968, 216.
43.Kretschmann, E., Raether, H., Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch, 1968, 23A, 2135-2136.
44.Wang, YQ., Wang, T., Su, YL., Peng, FB., Wu , H., and Jiang , ZY., Protein-adsorption-resistance and permeation property of polyethersulfone and soybean phosphatidylcholine blend ultrafiltration membranes. Journal of Membrane Science 2006, 270,(1-2),108-114.
45.Zhang, Z., Chen, S., Chang , Y., and Jiang , SY, Surface Grafted Sulfobetaine Polymers via Atom Transfer Radical Polymerization as Superlow Fouling Coatings, he Journal of Chemical Physics , 2006, 110 (
指導教授 阮若屈、張雍
(Ruoh-chyu Ruaan、Yung Chang)
審核日期 2011-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明