博碩士論文 983208009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.223.238.183
姓名 陳雅鈴(Ya-ling Chen)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 使用TRNSYS 模擬與驗證聚光型太陽光電系統電力性能
(Simulation and Validation of Electrical Performance of CPV System with TRNSYS)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 無動件式高流率電滲泵的製作與特性分析
★ 不同型式光纖與集光器搭配之效率測試★ 微電滲泵之暫態熱流研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文使用TRNSYS 軟體模擬中壢地區(緯度25oN,經度121oE)的聚光型太陽光電系統(concentrating photovoltaic, CPV)電力性能,並與實際量測的實驗數據做比較。
本實驗室開發的CPV 系統分別搭配四種追日控制方式(開迴路追日控制、閉迴路追日控制、混合式追日控制及指向誤差修正追日控制),CPV 系統搭配不同的追日控制方式產生不同的追日偏差,因此影響實驗和模擬結果二者的差異。
在TRNSYS 軟體的模擬中,由於軟體內建的標準元件是針對一般PV 模組,但CPV模組因為採用三五族三接面太陽電池和傳統的矽基太陽電池有相當差異,故本文參考相關文獻及電池溫度的實驗數據,推導CPV 模組模擬參數的設定值。
CPV 系統搭配開迴路和閉迴路追日控制產生的追日偏差角度大於其他二種追日控制方式,追日偏差角度變化範圍分別為0.04o~0.95o 和0.22o~0.77o,在晴朗的天氣下,每日平均輸出功率的模擬誤差分別為26%和47.1%。而搭配混合式和指向誤差修正追日控制具備回饋機制,因此它們的表現優於其他二種方法,不僅產生的追日偏差角度小,連帶著量測與模擬的輸出功率差亦小。搭配混合式和指向誤差修正追日控制對應的追日偏差角度變化範圍分別為0.01o~0.02o 和0.04o~0.2o,在晴朗的天氣下,二者每日平均輸出功率的模擬誤差為8.9%和4.35%。因此建議CPV 系統應搭配具有回饋修正的追日控制法像混合式或是指向誤差修正追日控制。
本文於TRNSYS 軟體中新增電力調節器的模擬元件,以2010 年 8、9 月(晴天且有足夠量測數據)長期的實驗數據在不考慮系統的追日偏差來驗證CPV 系統的模擬結果,其8、9 月累積發電量的模擬誤差分別為5.28%和9.53%。
摘要(英) In this study, predicted performance of concentrating photovoltaic (CPV) system using TRNSYS is compared with outdoor measurement in Jhong-Li area (latitude 25oN and
longitude 121oE). The CPV system developed in our laboratory is implemented with four sun-tracking approaches (open loop tracking, closed loop tracking, hybrid tracking and pointing-error correction tracking). CPV system with different sun-tracking approaches
generates different tracking offset-angle, thus affecting the deviations between measured and predicted results.
In TRNSYS, the PV array component is used to simulate the performance of general PV module. However the characteristics of solar cell is different between III-V type and Si-based type. Therefore, modified parameters in the PV array component are derived based on available references.
CPV system with open loop and closed loop sun-tracking approaches generated larger tracking offset-angle than the other two trackings, with range of offset-angle 0.04o~0.95o and 0.22o~0.77o, respectively. On sunny day, the daily average difference between measured and
predicted power for open-loop and close-loop are 26% and 47.1%, respectively. Performance of our CPV system with hybrid and pointing-error correction tracking approaches, both embedded with feedback correction, are better than the other two sun-trackings, not only resulted in smaller tracking offset-angle but also better agreement between the measured and predicted power output. The range of offset-angle for the hybrid and pointing-error correction
algorithms are 0.01o~0.02o and 0.04o~0.2o, respectively. The daily average difference between measured and predicted power were 8.9% and 4.35% on sunny day, respectively. Thus, it is suggested that CPV system should implemented with feedback correction such as the hybrid
or pointing-error correction algorithms.
This study adds an inverter component used in TRNSYS to perform inverter output simulation. Without considering the system’’s sun-tracking error, using long-term measured
data for validating simulation of CPV system in August and September (sunny days with enough measurement), 2010. Errors of cumulated power output using TRNSYS are 5.28%
and 9.53%, respectively.
關鍵字(中) ★ 追日控制系統
★ TRNSYS
★ 追日偏差角度
★ 模擬
★ 聚光型太陽光電系統
關鍵字(英) ★ Tracking offset-angle
★ Sun-tracking control system
★ TRNSYS
★ Simulation
★ Concentrating photovoltaic (CPV)
論文目次 中文摘要............................................................................................................................... i
Abstract ................................................................................................................................ ii
致謝..................................................................................................................................... iv
目錄...................................................................................................................................... v
圖目錄................................................................................................................................ vii
表目錄................................................................................................................................. xi
符號說明............................................................................................................................. xii
第一章 緒論......................................................................................................................... 1
1.1 前言........................................................................................................................ 1
1.2 聚光型太陽光電技術............................................................................................. 2
1.3 台灣聚光型太陽光電現況...................................................................................... 7
1.4 PV 系統性能模擬.................................................................................................... 8
1.5 研究動機................................................................................................................. 9
1.6 論文架構............................................................................................................... 10
第二章 實驗型CPV 系統.................................................................................................. 11
2.1 系統架構............................................................................................................... 11
2.2 CPV 模組............................................................................................................... 12
2.3 太陽追蹤器........................................................................................................... 14
2.4 追日控制系統....................................................................................................... 19
2.4.1 閉迴路控制系統........................................................................................ 19
2.4.2 開迴路控制系統........................................................................................ 22
2.4.3 混合式控制系統........................................................................................ 24
2.5 實驗數據擷取設備............................................................................................... 25
2.5.1 追日偏差角度量測設備............................................................................. 25
2.5.2 系統電力設備............................................................................................ 30
2.5.3 微型氣象站................................................................................................ 31
第三章 太陽光電模擬分析................................................................................................ 36
3.1 TRNSYS 軟體介紹................................................................................................ 36
3.2 模擬架構............................................................................................................... 39
3.3 數學模型............................................................................................................... 41
3.3.1 CPV 輸出模型............................................................................................. 41
3.3.2 電力調節器輸出模型................................................................................. 43
3.4 模擬參數設定....................................................................................................... 45
第四章 中壢地區CPV 系統性能....................................................................................... 53
4.1 CPV 系統性能實驗與模擬比較............................................................................ 53
4.1.1 開迴路追日控制實驗數據與模擬結果比較.............................................. 53
4.1.2 指向誤差修正追日控制實驗數據與模擬結果比較................................... 60
4.1.3 混合式追日控制實驗數據與模擬結果比較.............................................. 67
4.1.4 閉迴路追日控制實驗數據與模擬結果比較.............................................. 72
4.2 參數對模擬誤差的影響........................................................................................ 77
4.2.1 追日偏差.................................................................................................... 77
4.2.2 直射日照量................................................................................................ 78
4.2.3 電池溫度.................................................................................................... 79
第五章 結論與建議............................................................................................................ 81
5.1 結論...................................................................................................................... 81
5.2 未來改進方向....................................................................................................... 82
參考文獻............................................................................................................................. 83
參考文獻 Abdallah, S., Badran, O.O. (2008) Sun tracking system for productivity enhancement of solar
still, Desalination, 220: 669–76.
Ajay, K., Nagaraju, J. (2003) Micro-controller based sun tracker for line focus concentrating
collectors, Journal of the Solar Energy Society of India, 13: 1–8.
Alata, M., Al-Nimr, M.A., Qaroush, Y. (2005) Developing a multipurpose sun tracking
system using fuzzy control, Energy Conversion and Management, 46: 1229–45.
Cameron, C., Crawford, C., Foresi, J., King, D., McConnell, R., Riley, D., Sahm, A., Stein, J.
(2010) Performance Model Assessment for Multi-Junction Concentrating Photovoltaic
Systems. 6th International conference on CPV systems.
Davis, M.W., Fanney, A.H., Dougherty, B.P. (2003) Measured versus predicted performance
of building integrated photovoltaics. ASME J. Solar Energy Eng., 125: 21–7.
Delta-T Devices http://www.delta-t.co.uk/
Duffie, J.A. and Beckman, W.A. (2006) Solar Engineering of Thermal Processes. 4th Ed. New
York: John Wiley & Sons.
Gow, J.A., Manning, C.D. (1999) Development of a photovoltaic array model for use in
power-electronics simulation studies. IEE Proc: Electr. Power Appl., 146: 193–200.
HAMAMATSU. (2007) Two-dimensional PSD, HAMAMATSU.
Helwa, N.H., Bahgat, A.B.G., El Shafee, A.M.R., El Shenawy, E.T. (2000) Maximum
collectable solar energy by different solar tracking systems, Energy Sources, 22(1): 23-34.
Heredia, I.L., Moreno, J.M., Magalhaes, P.H., Cervantes, R., Quemere, G., Laurent, O. (2007)
Inspira’s CPV sun tracking, Chapter 11 in Concentrator Photovoltaics, Springer-Verlag.
Fraunhofer ISE http://www.ise.fraunhofer.de/
Kinsey, G.S. and Edmondson, K.M. (2009) Spectral response and energy output of
concentrator multijunction solar cells. Prog. Photovolt: Res. Appl. 17:279–288.
84
Kinsey, G.S., Hebert, P., Barbour, K.E., Krut, D.D., Cotal H.L. and Sherif, R.A. (2008)
Concentrator multijunction solar cell characteristics under variable intensity and
temperature. Prog. Photovolt: Res. Appl. 16:503–508.
Malik, I., Skumanich, A., Ryabova, E. (2010) PV vs. CPV and CSP: A comparative analysis
of technologies and cost roadmaps, 25th EUPVSEC.
Mondol, J.D., Yohanis, Y.G., Norton, B. (2007) Comparison of measured and predicted long
term performance of grid connected photovoltaic system. Energy Conversion and
Management, 48: 1065-80.
Mondol, J.D., Yohanis, Y.G., Norton, B. (2009) Optimising the economic viability of
grid-connected photovoltaic systems. Applied Energy, 86: 985–999.
Mondol, J.D., Yohanis, Y.G., Norton, B., Smyth, M. (2005) Long-term validated simulation
of a building integrated photovoltaic system. Solar Energy, 78: 163–176.
Pachauri, R.K., Reisinger, A. (2008) Climate Change 2007: Synthesis Report,
Intergovernmental Panel on Climate Change.
Peharz, G., Rodrı’guez, J.P.F., Siefer, G., Bett, A.W. (2011) Investigations on the temperature
dependence of CPV modules equipped with triple-junction solar cells. Prog. Photovolt:
Res. Appl. 19: 54-60.
Peippo, K., Lund, P.D. (1994) Optimal sizing of solar array and inverter in grid-connected
photovoltaic systems. Solar Energy Materials and Solar Cells, 32: 95–114.
Perez, R., Reed, R., Hoff, T. (2004) Validation of a simplified PV simulation engine. Solar
Energy, 77: 357–62.
Rubio, F., Martínez, M., Hipólito, A., Martín, A., Banda, P. (2010) Status of CPV technology,
25th EUPVSEC.
Rumyantsev, V.D. (2007) Terrestrial concentrator PV systems, Chapter 8 in Concentrator
Photovoltaics, Springer-Verlag.
Scripps CO2 Program http://scrippsco2.ucsd.edu/home/index.php
85
Sierra, C., Vazquez, A.J. (2005) High solar energy concentration with a Fresnel lens,
Materials Science, 20: 1339-43.
Sukamongkol, Y., Chungpaibulpatana, S., Ongsakul, W. (2002) A simulation model for
predicting the performance of a solar photovoltaic system with alternating current loads.
Renewable Energy, 27: 237–58.
Townsend, T.U. (1989) A method for estimating the long-term performance of direct-coupled
photovoltaic systems. MS Thesis, Department of Mechanical Engineering, University of
Wisconsin, Madison.
TRNSYS (2007) A transient simulation program, user’s manual, Version 16, Solar Energy
Laboratory, University of Wisconsin-Madison.
Yamaguchi, M., Araki, K., Takamoto, T. (2007) Concentrator solar cell modules and systems
developed in Japan, Chapter 15 in Concentrator Photovoltaics, Springer-Verlag.
核能研究所年報(2010),行政院原子能委員會核能研究所。
陳宏鑫(2011),以PSD 開發混合式追日控制與直射日照量測方法,國立中央大學能源
工程研究所碩士論文。
陳麒峯(2010),追日偏差量測技術開發與聚光太陽光電系統之實測,國立中央大學能
源工程研究所碩士論文。
曾衍彰(2010),聚光型太陽光發電之技術與電廠應用,科儀新知,第三十二卷第三期,
12 月。
莊榮瀚(2008),太陽追蹤器之設計與測試,國立中央大學能源工程研究所碩士論文。
電子時報,2010 年6 月11 日報導。
電子時報,2010 年7 月1 日報導。
劉智維(2010),以指向誤差修正技術應用在追日精度改進,國立中央大學能源工程所
碩士論文。
指導教授 吳俊諆(Jun-chi Wu) 審核日期 2011-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明