參考文獻 |
[1] A. Trautman, in Gravitation: an Introduction to current research, ed. L. Witten
(Wiley, New York, 1958).
[2] A. Papapetrou, Einstein's Theory Of Gravitation And Flat Space," Proc. Roy.
Irish Acad. (Sect. A) 52A, 11 (1948).
[3] P. G. Bergmann and R. Thomson, Spin And Angular Momentum In General
Relativity," Phys. Rev. 89, 400 (1953).
[4] C. M¿ller, Ann. Phys. 4, 347 (1958).
[5] J. N. Goldberg, Conservation Laws in General Relativity," Phys. Rev. 111, 315
(1958).
[6] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields 2nd ed.
(Addison-Wesley, Reading, MA, 1973).
[7] S. Weinberg, Gravitation and Cosmology, (Wiley, New York, 1972).
[8] C. W. Misner, K. Thorne and J. A. Wheeler, Gravitation, (Freeman, San Fran-
cisco, 1973).
[9] R. Penrose, Quasilocal mass and angular momentum in general relativity," Proc.
Roy. Soc. Lond. A 381, 53 (1982).
[10] L. B. Szabados, Quasi-Local Energy-Momentum and Angular Momentum in
GR: A Review Article," Living Rev. Rel. 7 (2004) 4.
[11] S. Hawking, Gravitational radiation in an expanding universe," J. Math. Phys.
9, 598 (1968).
[12] J. Katz, A note on Komar's anomalous factor," Class. Quant. Grav. 2, 423
(1985).
[13] J. Katz and A. Ori, Localisation of ¯eld energy," Class. Quant. Grav. 7, 787
(1990).
[14] J. Katz, D. Lynden-Bell and J. Bicak, Gravitational energy in stationary space-
times," Class. Quant. Grav. 23, 7111 (2006) [arXiv:gr-qc/0610052].
[15] J. Jezierski and J. Kijowski, The localization of energy in gauge ¯eld theories
and in linear gravitation," Gen. Rel. Grav. 22, 1283 (1990).
[16] A. J. Dougan and L. J. Mason, Quasilocal mass constructions with positive
energy," Phys. Rev. Lett. 67, 2119 (1991).
[17] G. Bergqvist, Positivity and de¯nitions of mass (general relativity)," Class.
Quant. Grav. 9, 1917 (1992).
[18] J. M. Nester and R. S. Tung, A quadratic spinor Lagrangian for general rela-
tivity," Gen. Rel. Grav. 27, 115 (1995) [arXiv:gr-qc/9407004].
[19] R. S. Tung and T. Jacobson, Spinor one forms as gravitational potentials,"
Class. Quant. Grav. 12, L51 (1995) [arXiv:gr-qc/9502037].
[20] D. C. Robinson, Spinor-valued forms and a variational principle for Einstein's
vacuum equations," Class. Quant. Grav. 13, 307 (1996).
[21] S. A. Hayward, Quasilocal gravitational energy," Phys. Rev. D 49, 831 (1994)
[arXiv:gr-qc/9303030].
[22] J. D. Brown and J. W. . York, Quasilocal energy and conserved charges de-
rived from the gravitational action," Phys. Rev. D 47, 1407 (1993) [arXiv:gr-
qc/9209012].
[23] S. Lau, Canonical variables and quasilocal energy in general relativity," Class.
Quant. Grav. 10, 2379 (1993) [arXiv:gr-qc/9307026].
[24] G. Bergqvist, Quasilocal mass for event horizons," Class. Quant. Grav. 9, 1753
(1992).
[25] J. M. Nester, A covariant Hamiltonian for gravity theories," Mod. Phys. Lett.
A 29 (1991) 2655.
[26] D. R. Brill and S. Deser, Variational methods and positive energy in general
relativity" Ann. Phys. (N.Y.) 50 (1968) 548.
[27] R. Schoen and S. T. Yau, Positivity of the total mass of a general space-time,"
Phys. Rev. Lett. 43 (1979) 1457.
[28] E. Witten, A simple proof of the positive energy theorem," Commun. Math.
Phys. 80 (1981) 381.
[29] C. C. Liu and S. T. Yau, New de¯nition of quasilocal mass and its positivity,"
Phys. Rev. Lett. 90 (2003) 231102. [arXiv:gr-qc/0303019].
[30] C.-C. M. Liu and S. T. Yau, Positivity of quasi-local mass II," J. Amer. Math.
Soc. 19 (2006) 181. [math.DG/0412292v2].
[31] C. M. Chen, J. M. Nester and R. S. Tung, Quasilocal energy momentum for
gravity theories," Phys. Lett. A 203 (1995) 5. [arXiv:gr-qc/9411048].
[32] C. M. Chen and J. M. Nester, Quasilocal quantities for GR and other gravity
theories," Class. Quant. Grav. 16 (1999) 1279. [arXiv:gr-qc/9809020].
[33] C. C. Chang, J. M. Nester and C. M. Chen, Pseudotensors and quasilocal
gravitational energy-momentum," Phys. Rev. Lett. 83 (1999) 1897. [arXiv:gr-
qc/9809040].
[34] C. M. Chen and J. M. Nester, A symplectic Hamiltonian derivation of quasilocal
energy-momentum for GR," Grav. Cosmol. 6 (2000) 257. [arXiv:gr-qc/0001088].
[35] C. M. Chen, J. M. Nester and R. S. Tung, The Hamiltonian boundary term and
quasi-local energy °ux," Phys. Rev. D 72 (2005) 104020. [arXiv:gr-qc/0508026].
[36] S. C. Anco and R. S. Tung, Symplectic structure of general relativity for spa-
tially bounded spacetime regions. I: Boundary conditions," J. Math. Phys. 43
(2002) 5531. [arXiv:gr-qc/0109013].
[37] S. C. Anco and R. S. Tung, Symplectic structure of general relativity for spa-
tially bounded spacetime regions. II: Properties and examples," J. Math. Phys.
43 (2002) 3984. [arXiv:gr-qc/0109014].
[38] R. Arnowitt, S. Deser, C. W. Misner, The Dynamics of General Relativity" in:
Gravitation: An Introduction to Current Research, ed L. Witten (Wiley, New
York, 1962) [arXiv:gr-qc/0405109].
[39] K. Kucha·r, Dynamics of tensor ¯elds in hyperspace. III", J. Math. Phys. 17,
801{820 (1976).
[40] J. M. Nester, General pseudotensors and quasilocal quantities", Class. Quantum
Grav. 21, S261{S280 (2004).
[41] J. Kijowski and W. M. Tulczyjew, A Symplectic Framework for Field Theories,
(Lecture Notes in Physics 107, Springer-Verlag, Berlin, 1979).
[42] M. T. Wang and S. T. Yau, Quasilocal mass in general relativity," Phys. Rev.
Lett. 102 (2009) 021101. [arXiv:0804.1174 [gr-qc]].
[43] M. Blau and B. Rollier, Brown-York energy and radial geodesics," Class. Quant.
Grav. 25 (2008) 105004. [arXiv:0708.0321 [gr-qc]].
[44] P. P. Yu and R. R. Caldwell, Observer dependence of the quasi-local energy
and momentum in Schwarzschild space-time," Gen. Rel. Grav. 41 (2009) 559.
[arXiv:0801.3683 [gr-qc]].
[45] J. M. Nester, L. L. So and T. Vargas, On the energy of homogeneous cosmolo-
gies," Phys. Rev. D 78 (2008) 044035. [arXiv:0803.0181 [astro-ph]].
[46] J. L. Liu, On quasi-local energy and the choice of reference", MSc. Thesis,
National Central University, 2007.
[47] A. P. Lundgren, B. S. Schmekel and J. W. York, Self-renormalization of the clas-
sical quasilocal energy," Phys. Rev. D 75, 084026 (2007) [arXiv:gr-qc/0610088].
[48] C. W. Misner, D. H. Sharp, Relativistic Equations for Adiabatic, Spherically
Symmetric Gravitational Collapse, Phys. Rev. 136 (1964), B571-B576; W. C.
Hernandez, C. W. Misner, Observer time as a coordinate in relativistic spherical
hydrodynamics, Astrophys. J. 143 (1966) 452-464; M. E. Cahill, G. C. McVittie,
Spherical symmetry and mass-energy in general relativity I. General theory, J.
Math. Phys. 11 (1970) 1382-1391.
[49] M. M. Afshar, Quasilocal Energy in FRW Cosmology," Class. Quant. Grav. 26,
225005 (2009) [arXiv:0903.3982 [gr-qc]].
[50] C. M. Chen, J. L. Liu and J. M. Nester, Quasi-local energy for cosmological
models," Mod. Phys. Lett. A 22 (2007) 2039. [arXiv:0705.1080 [gr-qc]].
[51] L. B. Szabados, Two-dimensional Sen connections and quasilocal energy mo-
mentum," Class. Quant. Grav. 11, 1847 (1994) [arXiv:gr-qc/9402005].
[52] N. ¶OMurchadha, L. B. Szabados and K. P. Tod, A comment on Liu and
Yau's positive quasi-local mass," Phys. Rev. Lett. 92 (2004) 259001. [arXiv:gr-
qc/0311006].
[53] M. T. Wang and S. T. Yau, A generalization of Liu-Yau's quasi-local mass,"
Commun. Anal. Geom. 15 (2007) 249. [math.DG/0602321].
[54] N.P. Konopleva and V.N. Popov, Gauge Fields, (New York : Harwood Academic
Publishers, 1981).
|