博碩士論文 993202102 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.220.70.192
姓名 林湧昱(Yung-yu Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以電弧爐還原碴製成複合無機聚合物之研究
(Composite Geopolymer Produced by Using Electric-arc Furnace Reductive Slag)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於電弧爐還原碴具含有矽、鋁、鈣元素之特性,屬多鈣型鋁矽酸鹽類材料,於鹼性溶液中可溶出矽、鋁、鈣離子,並互相鍵結形成Si-O-Si架狀結構與C-S-H膠體共存之複合無機聚合物。本文以電弧爐煉鋼廠生產爐碴-還原碴製成複合無機聚合物砂漿試體針對物性及化性進行活化效能及微觀分析探討,並以水淬爐石粉取代還原碴用量改善抗壓強度不足、乾縮等問題進行探討。
本文試驗結果顯示,活性效能分析發現還原碴研磨細度越高時,抗壓強度具一最佳細度範圍,且砂漿試體養護溫度越高時抗壓強度隨之增加,而砂漿拌合時間表現上,抗壓強度亦隨拌合時間增加而提升,但強度增幅效果不顯著。以爐石粉部分取代還原碴於抗壓強度而言,隨爐石粉取代量增加則抗壓強度增加,但凝結時間亦隨之降低。
微觀分析中發現以還原碴製成複合無機聚合物砂漿試體於含鹼當量8%為Ca2+轉化分界點;於乾縮試驗以純還原碴而言,以含鹼當量8%為分界點,8%以上乾縮量則均低於8%以下,主要為Ca2+轉換與AlO4鍵結使C-S-H含量降低所導致;以爐石粉取代還原碴而言,乾縮量隨爐石粉取代量增加而減少。
摘要(英) Electric arc furnace reductive slag contains the characteristics of silicon, aluminum, calcium is a multi-type calcium aluminum silicate materials, Si4+, Al3+, Ca2+ in an alkaline solution can be isolated, and the mutual bond formation of Si-O-Si and CSH gel the coexistence composite geopolymer. In this paper, the electric-arc furnace reductive slag produced composite geopolymer mortar specimens for physical and chemical performance and micro explore analysis, and the use of slag to replace the amount of reductive slag to improve the insufficient strength and shrinkage Analysis and Discussion.
The results showed that the strength analysis found that the higher the fineness of grind of reductive slag, the compressive strength has the best range, and mortar specimens curing temperature to improve the compressive strength increases, and the performance of mortar mixing time, the compressive strength increased with the mixing time increase with, but the strength increase of the result is not significant. Slag to replace reductive slag in terms of compressive strength, the slag replaced by the increase in the compressive strength increase, but the setting time decreases.
Microscopic analysis of reductive slag produced composite geopolymer mortar specimens in 8%(by Na2O) of Ca2+ into the cut-off point; To the purely reductive slag in the drying shrinkage test, 8%(by Na2O) cut-off point, Drying shrinkage of more than 8%(by Na2O) percent less than 8%(by Na2O) below the CSH gel was reduced by Ca2+ with AlO4 reaction.; Slag to replace reductive slag, the drying shrinkage with the slag to replace the amount of increase is reduced.
關鍵字(中) ★ 鹼活化技術
★ 電弧爐還原碴
★ 無機聚合物
關鍵字(英) ★ electric-arc furnace reductive slag
★ geopolymer
★ alkali-activator
論文目次 目錄 I
圖目錄 III
表目錄 V
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法及內容 3
1.4 名詞定義 4
第二章 文獻回顧 5
2.1 電弧爐煉鋼還原碴 5
2.1.1電弧爐煉鋼方式、流程及產量 5
2.1.2 還原碴組成及性質特性 7
2.2 無機聚合物 9
2.2.1 無機聚合物之反應機理 10
2.2.2 無機聚合物之結構及型態 13
2.2.3 無機聚合物之特性及影響 18
2.2.4 無機聚合物之優缺點 25
2.3 鹼活化技術 27
2.3.1鹼活化之反應機理 28
2.3.2 鹼活化技術之優缺點 30
2.3.3鹼活化技術之特性及影響 32
2.4 複合無機聚合物 36
2.4.1 複合無機聚合物之結構特性 38
第三章 實驗材料及方法 41
3.1 實驗材料 41
3.2 實驗設備及儀器 46
3.3 實驗流程及方法 53
3.3.1 實驗流程 53
3.3.2 實驗方法 55
3.3.3 實驗配比及計算 60
第四章 結果與分析 63
4.1 還原碴基本性質分析 64
4.1.1物理性質 64
4.1.2 化學性質 67
4.2 還原碴品質之基本試驗 72
4.2.1 鹼當量及鹼模數比之影響 72
4.2.2 水膠比之影響 79
4.2.3 鹼活化劑靜置時間之影響 81
4.3 複合無機聚合物之活性成效 84
4.3.1 各類鋁矽酸鹽礦物之活性差異 84
4.3.2 複合無機聚合物養護溫度之影響 86
4.3.3 複合無機聚合物膠結料細度之影響 88
4.3.4 複合無機聚合物拌合時間之影響 94
4.3.5 流度控制下膠結料細度之影響 99
4.4 複合無機聚合物之微觀分析 102
4.4.1 X光繞射分析(XRD) 102
4.4.2 傅立葉轉換紅外線光譜分析(FTIR) 104
4.5 爐石粉取代還原碴製成複合無機聚合物之影響 106
4.6 複合無機聚合物之收縮效應 110
第五章 結論與建議 115
5.1 結論 115
5.2 建議 117
參考文獻 118
參考文獻 戴詩潔,「高嶺石鋁矽酸鹽聚合材料之研究」,碩士論文,台北科技大學材料及資源工程研究所(2005)。
代新祥,「鹼激活土聚水泥的製備、結構與性能」,博士論文,華南理工大學(2002)。
李宜桃,「鹼活化還原碴漿體收縮及抑制方法之研究」,碩士論文,國立中央大學土木工程研究所(2003)。
郭硯華,「以鹼活化技術資源化電弧爐煉鋼還原碴之研究」,碩士論文,國立中央大學土木工程研究所(2007)。
黃兆龍,「混凝土性質與行為」,詹氏書局,第三版,臺北(2007)。
邱俊萍,「利用高爐爐渣製成無機聚合材料之研究」,碩士論文,台北科技大學材料及資源工程研究所(2002)。
蕭遠智,「鹼活化電弧爐還原碴之水化反應特性」,碩士論文,國立中央大學土木工程研究所(2002)。
張瑜文,「水庫淤泥應用於無機聚合膠結材」,碩士論文,國立成功大學土木研究所(2008)。
鄭大偉,「無機聚合技術的發展應用及回顧」,礦冶,第54卷,第1期,第141-157頁(2010)。
陳志賢,「含矽質廢棄物之無機聚合物」,博士論文,國立成功大學土木研究所(2009)。
陳冠宇,「鹼激發爐石基膠體配比因子對其工程性質影響之研究」,碩士論文,國立台灣科技大學(2010)。
吳浩、管學茂,「土聚水泥的研究現況及應用發展前景」,水泥工程,第二期,河南(2004)。
余騰耀、林平全、施延熙、黃兆龍、蔡敏行,「電弧爐煉鋼還原碴資源化應用技術手冊」,經濟部工業局,臺北(2001)。
Bakharev T., Sanjayan J. G., and Cheng, Y. B.(1999),“ Alkali activation of Australian slag cement,”Cement and Concrete Research, 29(1), pp. 113-120.
Bakharev T.(2005),“ Resistance of geopolymer materials to acid attack,”Cement and Concrete Research, 35, pp.658-670.
Bakharev T.(2006),“ Thermal behavior of geopolymers prepared using class F fly ash and elevated temperature curing,”Cement and Concrete Research, 36, pp.1134-1147.
Collins, F. G., and Sanjayan, J. G.(1999),“ Workability and mechanical properties of alkali activated slag concrete,”Cement and Concrete Research, 29(3), pp. 455-458.
Chindaprasirt P., Chareerat T., and Sirivivatnanon V.(2007),“ Workability and strength of coarse high calcium fly ash geopolymer,”Cement and Concrete Composites, 29, pp. 24-229.
Criado M., Jimenez A. F., and Palomo A.(2010),“ Effect of sodium sulfate on the alkali activation of fly ash,”Cement and Concrete Composites, 32, pp. 589-594.
Davidovits J.(1988),“ Geopolymer chemistry and properties, Proceeding of geopolyme,88 second international conference,”France, pp.25-48.
Davidovits J.(1999),“ Chemistry of geopolymeric systems terminology, Proceeding of geopolymer,99 second international conference,”France, pp.9-37.
Duxson P., Provis J.L., Lukey G.C., Mallicoat S.W., Kriven W.M., and Van Deventer J.S.J.(2005),“ Understanding the relationship between geopolymer composition,” microstructure and mechanical properties, Colloids and Surfaces A: Physicochem. Eng. Aspects, 269, pp. 47-58.
Duxson P., Provi J. L., Lukey G. C., Separovic F., and Van Deventer J. S. J.(2005),“ 29Si NMR study of structural ordering in aluminosilicate geopolymer gels,”Langmuir, 21(7), pp. 3028-3036.
Jimenez A. F., Palomo J. G., and Puertas F.(1999),“ Alkali-activated slag mortars mechanical strength behavior,”Cement and Concrete Research, 29, pp. 1313-1321.
Jimenez A. F., and Palomo A.(2005),“ Composition and microstructure of alkali activated fly ash binder: Effect of the activator,”Cement and Concrete Research, 35, pp. 1984-1992.
Jonathan T., and Kenneth J. K. M.(2010),“ Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals,”Cement and Concrete Research, 40, pp. 787-794.
Krizan D., and Zivanovic B.(2002),“ Effects of dosage and modulus of water glass on early hydration of alkali-slag cements,”Cement and Concrete Research, 32, pp. 1181-1188.
Mingyu H., Xiaomin Z., and Fumei L.(2009),“ Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives,”Cement and Concrete Composites, 31, pp. 762-768.
Palomo A., Grutzeck M. W., and Blanco M. T.(1999),“ Alkali-activated fly ashes a cement for the future,”Cement and Concrete Research, 29, pp. 1323-1329.
Phair J. W., and Van Deventer J. S. J.(2001),“ Effect of silicate activator pH on leaching of waste based inorganic polymer,”Minerals Engineering, 14(3), pp. 289-304.
Phair J. W., Van Deventer J. S. J., and Smith J. D.(2004),“ Effect of Al source and alkali activation on Pb and Cu immobilization in fly-ash based “geopolymers”,”Applied Geochemistry, 19, pp. 423-434.
Rovnanik P.(2010),“ Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer,”Construction and Building Materials, 24, pp. 1176-1183.
Ravikumar D., Peethamparan S., and Neithalath.(2010),“ Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder,”Cement and Concrete Composites, 32, pp. 399-410.
Shi C., and Li Y.(1989),“ Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement,”Cement and Concrete Research, 19(4), pp. 527-533.
Shi C., and Day R. L.(1995),“ A calorimetric study of early hydration of alkali-slag cement,”Cement and Concrete Research, 25(6), pp. 1333-1346.
Shi C., and Day R. L.(1996),“ Some factors affecting early hydration of alkali-slag cement,”Cement and Concrete Research, 26(3), pp. 439-447.
Song S., and Jennings H. M.(1999),“ Pore solution chemistry of alkali-activated ground granulated blast-furnace slag,”Cement and Concrete Research, 29(2), pp. 159-170.
Swanepoel J. C., and Strydom C. A.(2002),“ Utilisation of fly ash in a geopolymeric material,”Applied Geochemistry, 17(8), pp. 1143-1148.
Van Jaarsveld J. G. S., Van Deventer J. S. J., and Lorenzen L.(1997),“ The potential use of geopolymeric materials to immobilize toxic metals: Pare I. theory and applications,”Minerals Engineering, 10(7), pp. 659-669.
Van Jaarsveld J. G. S., Van Deventer J. S. J., and Lukey G. C.(2002),“ The effect of composition and temperature on the properties of fly ash and kaolinite-based geopolymers,”Chemical Engineering Journal, 89, pp.63-73.
Wang S. D., Scrivener K. L., and Pratt P. L.(1994),“ Factors affecting the strength of alkali-activated slag,”Cement and concrete Research, 24(6), pp. 1033-1043.
Wang S. D., Pu X. C., Scrivener K. L., and Pratt P. L.(1995),“ Alkali-activated cement and concrete: A review of properties and problems,”Advances in Cement Research, 7(27), pp. 93-102.
Yip C. K., Lukey G. C., and Van Deventer J. S. J.(2005),“ The coexistence of geopolymeric gel and calcium silicate hydrateat the early stage of alkaline activation,”Cement and Concrete Research, 35, pp. 1688-1697.
Xu H., and Van Deventer J. S. J.(2000),“ The geopolymerisation of alumino-silicate minerals,”International Journal Minerals Process, 59, pp. 247-266.
Xu H., Van Deventer J. S. J., and Lukey G. C.(2001),“ Effect of alkali metals on the preferential geopolymerization of stilite/kaolinite mixtures,”Department of Chemical Engineering, 40, pp. 3749-3756.
Xu J. Z., Zhou Y. L., Chang Q., and Qu H. Q.(2006),“ Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers,”Materials Letters, 60, pp. 820-822.
Xiaolu G., Huisheng S., and Warren A. D.(2010),“ Compressive strength and microstructural characteristics of class C fly ash geopolymer,”Cement and Concrete Composites, 32, pp. 142-147.
指導教授 黃偉慶(Wei-Hsing Huang) 審核日期 2012-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明