博碩士論文 100322057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.191.138.59
姓名 錢思穎(Ssu-Ying Chien)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 高速列車進入隧道之數值模擬
(Numerical Simulation of the Aerodynamic Pressure Induced by Train/Tunnel Interaction)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 高速列車進入隧道或地下月台時,強烈之氣流會造成巨大壓力變化,會造成音爆、列車阻力及能耗的增加和候車乘客的不適等問題。本研究採用三維可壓縮流計算流體動力學模式,計算高速列車進入隧道與兩輛列車在隧道內交會時所產生的風壓變化,以及列車在隧道內交會時的受力大小。紊流模式採用RNG k-e紊流模式計算列車在運動過程中周圍的紊流流場,模擬結果並與Ricco et al. (2007)的模型實驗及Glockle & Pfretzschner (1988)的德國Enmalberg隧道現地監測結果比較,以增加數值模式的可信度。
本研究利用此數值模式先計算單輛台灣高鐵列車700T進入長隧道的問題,以瞭解壓力波生成與在隧道內的傳播情形,比較列車形狀、假隧道和解壓孔對壓力波的影響。最後,本研究再針對兩輛列車在隧道內交會的問題進行一系列的模擬,研究列車速度、阻塞比、隧道長度、交會位置和對隧道內的壓力係數和車體的受力係數之影響。研究結果顯示:台灣高鐵700T列車車頭形狀相較於長方柱形列車,可以緩解59%的壓縮波壓力與68%的壓力梯度,但車尾形狀則對其無削減作用。假隧道和解壓孔的設置無法緩解壓縮波的壓力峰值,但可以使壓力梯度分別降低25% 和37%,而同時設置假隧道與解壓孔於隧道出口效果最好,壓力梯度可降低58%。當兩輛列車在隧道內交會且並列時,其車體會受到最大的側向吸引力,使得列車互相靠近,且此吸引力與列車速度的平方成正比,此結果與Hwang et al. (2001)一致。隧道內最大壓力會隨著車速與阻塞比的增加而增加。當兩輛列車阻塞比的增加會使得車體受到更大的側向吸引力,而隧道長度則對側向吸引力無影響。最後,當兩輛列車在隧道1/3處交會時,其所產生之隧道內最大壓力小於在隧道中央交會,但是交會位置不會對車體受力情形造成影響。
摘要(英) The aerodynamics effects caused by high-speed trains entering a tunnel may induce many serious engineering problems such as the passenger discomfort, noise surrounding the tunnel entrance/exit and possible damage to the train body and tunnel facilities. A three-dimensional, compressible, turbulent model was utilized to investigate the pressure waves generated by trains/tunnel interactions. The turbulent flows generated by the moving train in a long tunnel were computed by the RNG k-e turbulence model. The numerical model was verified by comparing with the experimental results of Ricco et al. (2007) and field observation of Glockle & Pfretzschner (1988) in Enmalberg Tunnel.
Then a series of numerical simulations of a single train traveling through a long tunnel were carried out to understand the effect of the train shape as well as the influences of the hoods and holes on the compression wave. Compared with a squared cylinder train, the nose shape of Taiwan 700T train can effectively reduce the amplitude and pressure gradient of the compression wave. The enlarged hood and holes at the portal are demonstrated to attenuate the pressure gradient 25% and 37%, respectively, and 58% when holes and hoods were adopted simultaneously. Finally, the simulation results of two trains passing each other indicates that the maximum positive +CPmax and negative pressure -CPmax occur at the middle of the tunnel when two trains pass each other at Xsc = 0.5 with the same speed. The effects of the length ratio on the aerodynamic forces are insignificant. The maximum positive pressure +CPmax increases as the train speed and the blockage ratio increases. In addition, the simulated results show that the maximum drag coefficient CDmax is resulted from the nose-induced compression waves. Also, the maximum suction force CSmax occurs as two trains are aligned side by side, and the side force is proportional to the square of the train speed. The maximum side force coefficient CSmax rises as the blockage ratio increases. Compared to Xsc = 0.5, when two trains passing each other at Xsc = 0.67 with the same speed, the maximum positive +CPmax becomes small. However, the intersecting location is independent on the side force coefficient CSmax and the drag coefficient CDmax.
關鍵字(中) ★ 高速列車
★ 列車隧道互制
★ 可壓縮流場
★ 計算流體動力學
★ 列車交會
關鍵字(英) ★ Computational Fluid Dynamics
★ High Speed Train
★ Compressible flow
★ Train/tunnel interaction
★ Train aerodynamics
論文目次 Abstract I
Contents IV
Notation VI
Table captions IX
Figure captions X
1. Introduction 1
2. Numerical model 9
2.1 Governing Equations 9
2.2 Turbulence Model 11
2.3 Sliding Mesh Method 16
3. Model verification 17
3.1 Model verification with a scaled model test 17
3.2 Model verification with field measurement 19
3.3 Grid independence 20
4. Results and discussion 21
4.1 A single train entering into a tunnel 21
4.1.1 Pressure waves induced by the train entry 22
4.1.2 Train shape effect 25
4.1.3 Tunnel hoods effect 26
4.2 Two trains pass each other inside a tunnel 27
4.2.1 Two trains intersecting in the tunnel with the same speed 28
4.2.2 Length ratio effect 34
4.2.3 Train speed effect 34
4.2.4 Blockage ratio effect 35
4.2.5 Intersecting location effect 35
5. Conclusions 36
References 38
Tables 41
Figures 45
參考文獻 1. Auvity B., Bellenoue M. and Kageyama T., 2001. Experimental study of the unsteady aerodynamic field outside a tunnel during a train entry. Experiments in Fluids 30, 221-228.
2. Baron, A., Mossi, M. and Sibilla, S., 2001. The alleviation of the aerodynamic drag and wave effects of high-speed trains in very long tunnels. J. of Wind Engineering and Industrial Aerodynamics 89, 365-401.
3. Baron, A., Molteni, P. and Vigevano, L., 2006. High-speed trains: Prediction of micro-pressure wave radiation from tunnel portals. J. of Sound and Vibration 296, 59-72.
4. Bellenoue, M., Moriniere, V. and Kageyama, T., 2002. Experimental 3-D simulation of the compression wave, due to train-tunnel entry. J. of Fluids and Structures 16(5), 581-595.
5. Fujii, K. and Ogawa, T., 1995. Aerodynamics of high speed trains passing by each other. Computers & Fluids 24(8), 897-908.
6. Gawthorpe, R., 2000. Pressure effects in railway tunnels. Rail International, Monthly Review of the IRCA/UIC, April 2000, pp. 10-17.
7. Glockle, H and Pfretzschner, P., 1988. High speed tests with ICE/V passing through tunnels and the effect of sealed coaches on passenger comfort, 6th International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels, Durham, England, pp. 23-44.
8. Howe, M.S. 1998a. Mach number dependence of the compression wave generated by a high-speed train entering a tunnel. J. of Sound and Vibration 212, 23-26.
9. Howe, M.S. 1998b. The compression wave generated by a high-speed train at a vented tunnel entrance. J. of the Acoustical Society of America 104(3), Pt. 1. 1158-1164.
10. Howe, M.S. 1999. On the compression wave generated when a high-speed train enters a tunnel with a flared portal. J. of Fluids and Structures 13, 481-498.
11. Howe, M.S. 2000, Iida, M., Fukuda, T., Maeda, T. Theoretical and experimental investigation of the compression wave generated by a train entering a tunnel with a flared portal. J. of Fluid Mech. 425, 111-132.
12. Howe, M.S., Iida, M., Fukuda, T., 2003. Influence of an unvented tunnel entrance hood on the compression wave generated by a high-speed train. J. of Fluids and Structures 17, 833-853.
13. Howe, M.S., Winslow, A., Fukuda, T., 2008. Rapid calculation of the compression wave generated by a train entering a tunnel with a vented hood: Short hoods. J. of Sound and Vibration 311, 254-268.
14. Hwang J., Yoon, T.S., Lee, D.H., Lee, S.B. 2001 Numerical study of unsteady flow field around high speed trains passing by each other. JSME International Journal Series B Vol.44 (3), 451-464.
15. Iida, M., Tanaka, Y., Kikuchi, K., Fukuda, T., 2001. Pressure waves radiated directly from tunnel portals at train entry or exit. Quarterly Report of RTRI 42 (2), 83-88.
16. Iida, M., Kikuchi, K., Fukuda, T., 2006. Analysis and experiment of compression wave generated by train entering tunnel entrance hood. JSME International Journal. Series B, Special Issue on Environmental Flows 49(3), 761-770.
17. Jayatilleke, C., 1969. The influence of Prandtl number and surface roughness on the resistance of the laminar sublayer to momentum and heat transfer. Prog. Heat Mass Transfer 1, 193-321.
18. Kage, K., Miyake, H., Kawagoe, S., 1995. Numerical study of compression waves produced by high-speed trains entering a tunnel (effects of shape of hood). JSME International Journal. Series B, Fluids and Thermal Engineering 38(2), 191-198.
19. Kim, J.Y., Kim, K.Y., 2007. Experimental and numerical analyses of train- induced unsteady tunnel flow in subway. Tunnelling and Underground Space Technology 22, 166-172.
20. Ko, Y.Y., Chen, C.H., Hoe, I.T., Wang, S.T., 2012. Field measurements of aerodynamic pressures in tunnels indeuced by high speed trains. J. of Wind Engineering and Industrial Aerodynamics 100, 19-29.
21. Launder, B.E. and Spalding, D.B., 1974. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering 3, 269-289.
22. Liu, T.H., Tian, H.Q., Liang, X.F., 2010. Design and optimization of tunnel hoods. Tunnelling and Underground Space Technology 25, 212-219.
23. MacNeill, R., Holmes, S., H.S. Lee, 2002. Measurement of the aerodynamic pressures produced by passing trains. Proceedings of: JRC2002. The 2002 ASME/IEEE Joint Rail Conference, April 23-25, 2002, Washington D.C.
24. Maeda, T., Matsumura, T., Iida, M., Uchida, K., 1993. Effect of shape of train nose on compression wave generated by train entering tunnel. Proceedings of the International Conference on Speedup Technology for Railway and Maglev Vehicles 2, 315-319.
25. Miyachi, T., Fukuda, T., Iida, M., Maeda, T., Ozawa, S., 2008. Distortion of compression wave propagating through Shinkansen tunnel. Noise and Vibration Mitigation. NNFM 99, 9-18.
26. Mok, J.K., Yoo, J., 2001. Numerical study on high speed train and tunnel hood interaction. J. of Wind Engineering and Industrial Aerodynamics 89, 17-29.
27. Ogawa, S., 1979. Study of micro-pressure wave radiated from a tunnel exit. Railway Technical Research Report. (in Japanese)
28. Ogawa, S., Maeda, T., Matsumura, T., Uchida, K., 1993. Micro-pressure waves radiating from exits of Shinkansen tunnels. Quart Rep. Railway Tech. Res. Inst. 34(2), 134-140.
29. Raghunathan, R.S. Kim, H.D. Setoguchi, T., 2002. Aerodynamics of high-speed railway train. Progress in Aerospace Science 38, 469-514.
30. Ricco, P., Baron, A., Molteni, P., 2007. Nature of pressure waves induced by a high-speed train travelling through a tunnel. J. of Wind Engineering and Industrial Aerodynamics 95, 8, 781-808.
31. Uystepruyst, D., William-Louis, M., Creusé, E., Nicaise, S., Monnoyer, F., 2011. Efficient 3D numerical prediction of the pressure wave generated by high-speed trains entering tunnels. Computers & Fluids 47(1), 165-177.
32. Vardy, A.E. 2008. Generation and alleviation of sonic booms from rail tunnels. Proceeding of the Institution of Civil Engineering and Computational Mechanics 161, 107-119.
33. William-Louis, M., Tournier, C., 2005. A wave signature based method for the prediction of pressure transients in railway tunnels. J. of Wind Engineering and Industrial Aerodynamics 93, 521-531.
34. Xiang, X.T., Xue, L.P., 2010. Tunnel hood effects on high speed train-tunnel compression wave. J. of Hydrodynamics 22, 940-947.
35. Yakhot, V. and Orszag, S.A., 1986. Renormalization group analysis of turbulence: I. Basic Theory. J. of Scientific Computing 1(1),1-51.
指導教授 朱佳仁(Chia-Ren Chu) 審核日期 2012-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明