博碩士論文 91322062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.116.239.11
姓名 張友龍(Yu-Lung Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用次聲與地聲之土石流現場觀測與雨量臨界分析
(Applied Infrasound and geophones in detecting debris flows in the field and analysis of rainfall threshold curve)
相關論文
★ 不均勻圓形橋墩之局部沖刷研究★ 砂礫河床之跌水沖刷分析
★ 土石流潛勢判定模式及土石壩滲流破壞之研究★ 港池污染擴散影響因子之探討
★ 不均勻橋墩及群樁基礎之局部沖刷研究★ 邊牆射流及尾檻對砂質底床之沖刷研究
★ 砂粒受水平振動行為之研究★ 土石流發生之水文特性探討
★ 不均勻橋墩與套環保護工法之局部沖刷研究★ 護坦及尾檻下游之局部沖刷分析
★ 橋台束縮與局部沖刷之研究★ 慢顆粒流之輸送帶實驗與影像分析
★ 均勻入滲時坡面地下水流之理論解析★ 尾檻設置對下游之局部沖刷效應
★ 二維斜坡顆粒流之輸送帶實驗與分析★ 斜坡土體滲流破壞引致土石流之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大規模劇烈物理現象如核爆、地震等,在現象產生過程中皆會產生次聲(即頻率低於人類聽覺下限(20Hz)的聲波)。次聲因其低頻而含有下面兩種特性:1.能量衰減速率對比於高頻波較低 2.穿透性較高頻波高。土石流之次聲波與土石流組成特性以及運動型態有關,而土層中之地聲相對於空氣中之聲波而言,其環境噪音極低,但因快速遞減使其觀測位置必須緊靠土石流流經地點。鑒於近年來全球氣候變遷,極端雨量出現機率增加,土石流發生機率因而提高,經由地聲及次聲監測系統來收集現地資料是降低坡地災害之可行方法。本研究經由空氣傳播之次聲波和土層傳播之地聲來分析瞭解土石流之音頻特性與其地聲波傳遞特性,並對比實驗及現場量測資料來分析土石流運行時之次聲特性。本研究以土石流現地之雨量分析與事件前後之地形變化來佐證土石流的發生,冀望能求取現地土石流啟動之雨量門檻值與運行形態機制。
一般現地低頻噪音成因為風、雨聲、雷聲、地震等因素,實驗及現地資料顯示其特徵頻率皆在5Hz以下。2006年六月之暴雨事件苗栗火炎山土石流音波與地聲資料中,濾去5Hz以下噪音後音波與地聲資料時域與頻率域皆具有相似特性,若以HHT求取解析度更高之特徵頻率約為5-15Hz。而地聲所收集到之樣本數較多,通常其頻率特性概括於10~50Hz間。而在奧地利及火炎山所收集到之部份音波及地聲資料顯示其在事件開頭有特徵頻率下降及事件尾端特徵頻率升高之情形。
火炎山現地雨量則由距離反比法推算並非為最近距離之雨量站所得資料最接近,在當地所設置雨量計所得資料顯示,2006~2007年間其土石流雨量門檻值主要為67 mm有效降雨量,之後則超過3mm/hr之強度皆有可能發生土石流。
摘要(英) Naturally occurring infrasounds produced by large geophysical motions (e.g. nuclear explosions and earthquakes). Infrasound propagates with two characteristics: 1.Traveling in long distance in the atmosphere at the speed of sound for the low adsorption in the air. 2. Transmission of infrasound is large than the high-frequency wave. The infrasonic signals induced by debris flows are related to the magnitude and composition of the failure zone as well as the slope areas. The location of geophones should be close to the debris flow channel. The acoustic noises such as wind gusts, rains, thurders and earthquakes are below 5Hz. The infrasound and geophone data are measured with 5Hz high-pass filter make the perfect match in time domain and frequency domain during the heavy rain debris flow events on June,2006. The debris flows occurred in Houyenshan with the peak frequencies between 5-15 Hz during the surges. The frequency of seismic data are located between 10-50Hz Non-stationary process of the debris flow acoustic signals are demonstrated by using the HHT approach.Frequency rising by surge and falling by tail flowing are showed in the spectrum methods.
Debris flows tend to occur in Houyenshan, Taiwan once the total rainfall exceeds 67 mm and and the rainfall intensity is higher than 3 mm/hr preceded by heavy hourly rainfall after 2006.
關鍵字(中) ★ 土石流臨界雨量線
★ 地聲
★ 次聲
★ 土石流
★ 希爾伯特黃轉換
關鍵字(英) ★ geophones
★ rainfall threshold curve
★ Hilbert-Huang Transform
★ infrasound
★ debris flow
論文目次 摘 要 I
Abstract II
誌 謝 III
目 錄 V
圖 目 錄 VII
表 目 錄 XIII
符 號 表 XIV
第一章 緒 論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 土石流之次聲波 2
1.2.2 土石流之地聲 3
1.2.3 頻率分析 3
1.2.4 土石流臨界雨量分析 5
1.3 本文架構 8
第二章 理論與現地監測說明 9
2.1 聲波監測 9
2.2 地聲監測 18
2.3 雨量分析 22
2.4 設備介紹 26
2.4.1 音波與地聲監測系統 26
第三章 背景噪音頻率特性 30
3.1 背景噪音風聲(風速風壓音波實驗) 30
3.2 雨聲 41
3.3 雷聲 46
3.4 地震 48
3.5 徑流 51
第四章 現地監測土石流音波與地聲與雨量成果 55
4.1 現地之地聲衰減實驗 55
4.2 2006/6/7-6/10暴雨土石流事件 67
4.3 2006/7/12 碧利斯颱風(Bilis) 80
4.4 2007/8/11 大陸雲南蔣家溝之泥流聲波量測 83
4.5 2007/8/5 聖帕颱風(Sepat) 87
4.6 2007/10/5 柯羅莎颱風(Krosa) 91
4.7 颱風土石流之雨量與總分析 102
4.8 奧地利土石流分析 109
4.9 2012/6/21苗栗火炎山之土石流 116
第五章 結論 120
參考文獻 122
參考文獻 [1] 池古浩,(1980),「土石流災害調查法」,日本山海堂編印,國家科學委員會土石流研究群日文翻譯本。
[2] 江永哲、林啟源,(1991),「土石流之發 生雨量特性分析」,中華水土保持學 報,第二十二卷第二期,第21-37 頁。
[3] 李欣輯,(1997),「地聲探測器應用於土石流預警」,國立台灣大學土木系碩士論文。
[4] 李明熹,(2006),「土石流發生降雨警戒分析及其應用」,國立成功大學水 利及海洋工程研究所博士論文。
[5] 吳積善等,(1990),「雲南蔣家溝土石流之觀測研究」,中國大陸科學出版社。第156~164頁。
[6] 吳仁明、趙家民,(2008),「 苗栗火炎山崩塌地變遷對土石流發生之研究」,環境與管理研究,第九卷第一期,第129-149頁。
[7] 林俊全,(2008),「火炎山自然保留區土石流演變監測(二)」,農委會林務局報告。
[8] 周憲德、廖偉民、姚善文(2002),「土石流降雨臨界條件之分析」,中國土木水利工程學刊,第十四卷第四期, 第1~8頁。
[9] 周憲德,(2003),「 坡地災害次聲特性與監測系統之研究」,農委會水土保持局報告。
[10] 周憲德、張友龍、章書成,(2005),「土石流運動時之次聲特性監測及分析」,水土保持學報,第三十六卷第三期,第233-238頁。
[11] 洪如江 (1992),「坡地災害防治(一) 重點科技叢書第六輯」,行政院國科會編印,第32頁。
[12] 洪如江、郭振泰、陳榮河、陳鴻霞(1986、1987), 「林口臺地及鄰近地區洪災及坍方之研究(一)、(二)」,行政院國科會防災研究報告,第73~56頁、第74~43頁。
[13] 范正成(1998),「土石流防災與監測之研究-雨量分析、降雨預報應用於土石流預警(三) 」行政院國家科學委員會專題研究計畫成果報告,NSC87-2621-P-002-039 號,第32頁。
[14] 范正成、姚正松(1997),「台灣東部地區土石流發生的水文及地文條件之初步研究」,八十六年度農業工程研討會論文集,第525~531頁。
[15] 陳永寬、葉堃生、詹進發(2000),「應用數位航測技術於三義火炎山地形變遷之研究」,航測及遙測學刊,第五卷第一期,第17~31頁。
[16] 馬大猷、楊訓仁,(1999),「聲學漫談」,牛頓出版社。
[17] 章書成、洪勇、余斌,(2002),「泥石流次聲特性及警報裝置」。中國科學院水利部成都山地災害與環境研究所。
[18] 黃清哲、謝正倫、尹孝元、鄭友誠,(2002),「土石流地聲特性之實驗研究」, 第五屆中日防災論文集,台南成功大學,第29~42頁。
[19] 鄭凱文(2003),「火炎山土石流地形特徵之研究」,國立中興大學水土保持系碩士論文。
[20] 蔣偉寧、吳正憲,(2001),「希爾伯特阻尼頻譜於高樓損傷評估之應用」,國立中央大學土木所,民國九十年六月。
[21] 謝正倫(1991),「土石流預警系統之研究」,研究報告第130 號,國立成功大學台南水工試驗所。
[22] 蘇德勝,(1995),「噪音原理及控制」,台隆書店。
[23] 詹錢登,(2000),「土石流概論」,科技圖書股份有限公司,台北。
外文部分
[24] Andreotti, B., (2004), “The song of dunes as a wave-particle mode locking”, Phys. Rev. Lett., Vol. 93, pp.238001.
[25] Arnoult, K.M., Wilson, C.R., Olson, J.V., Szuberla, C.A.L. (2005),“Infrasound associated with Mt. Steller avalanche. Inframatics”, Vol.12, pp.4–7.
[26] Bagnold, R. A. (1966). The shearing and dilatation of dry sand and the singing mechanism. Proc. Roy. Soc. 295A, pp. 219–232
[27] Bass, H.E., Bauer, H.J., Evans, L.B., (1972), “Atmospheric absorption of sound: analytical expressions” J Acoust. Soc. Am., Vol.52, pp. 821–825.
[28] Bedard, A.J. Jr., (1988), ”Infrasound from natural sources” Proceedings Inter-Noise ‘88 International Conference on Noise Control Engineering, Avignon, France.
[29] Bedard, A.J. Jr, (1993), “Low-frequency sound waves associated with avalanches, atmospheric turbulence, severe weather, and earthquakes”, J. Acoust. Soc. Am., Vol. 94(3), pp.1872.
[30] Bedard, A.J., Jr., (1996), “Infrasonic and Near Infrasonic Atmospheric Sounding and Imaging”, NOAA/ERL/Environmental Technology Laboratory.
[31] Bruel & Kjaer, (1988), “Acoustic Measurement”, Bruel & Kjaer.
[32] Campus, P., Christie, D.R., (2010),”Infrasound Monitoring for Atmospheric Studies”, Springer, Chapter 6.
[33] Cannon, S.H., Gartner, J.E., (2005), “Wildfire-related debris flow from a hazards perspective.” In: Debris flow hazards and related phenomena “(Jakob M, Hungr O, eds). Berlin Heidelberg: Springer, pp. 363–385.
[34] Chen, C.Y., Chen, T.C. Yu, F.C. Yu, W.H. Tseng, C.C., (2005), “Rainfall duration and debris-flow initiated studies for real-time monitoring”, Environmental Geology, Vol. 47, pp.715-724.
[35] Chen, J. T., Chang, S. C., and Yeng, M. F., (1991), “Charateristics of underground sound generated by debris flows and the fabrication of nj-2 type debris-flow alarm”, 2nd National Debris Flow Conference, China.
[36] Chou, H.T., Y.L. Cheung, Zhang, S.C., (2007), “Calibration of infrasound monitoring system and acoustic characteristics of debris-flow movement by field studies”, 4th Int. Conf. On Debris-Flow Hazards Mitigation, Chengdu, China, September, pp.315-325.
[37] Cook, R.K., Young, J.M., (1962), “Strange Sounds in the Atmosphere-Part2,” the Acoustical Society of America, Sound, Vol. 1, pp.25-33.
[38] Cooley, J. W., Tukey, J. W., (1965), ”An algorithm for the machine calculation of complex Fourier series” Math.of Comput., Vol. 19, pp. 297- 301.
[39] Criswell, D.R., J. F. Lindsay, and Reasoner, D. L., (1975), "Seismic and Acoustic Emissions of a Booming Dune", Journal of Geophysical Research, Vol.80, pp.4963.
[40] Danielson, G. C., Lanczos., C., (1942), “Some improvements in practical Fourier analysis and their application to X-ray scattering from liquids,” J. Franklin Inst., vol. 233, pp. 365-380 and 43-52.
[41] Donn, W.L., Balachandran, N.K., Kaschak, G., (1974),” Atmospheric infrasound radiated by bridges”. J.Acoust. Soc. Am., Vol.56, pp.1367.
[42] Donn, W.L., Balachandran, N.K., (1981), “Mount St. Helens eruption of 18 May 1980: air waves and explosive yield”, Science, Vol.213, pp.539–541.
[43] Donn, W.L., Rind, D., (1972), “Microbaroms and the temperature and winds in the upper atmosphere”, J. Atmos. Sci., Vol.29, pp.156–172.
[44] Donn, W.L., Shaw, D.M., (1967), “Exploring the atmosphere with nuclear explosions”, Rev. Geophys., Vol. 5, pp. 53–82.
[45] Douady, S., Manning, A., Hersen, P., Elbelrhiti, H., Protiere, S., et al., (2006), “Song of the dunes as a self-synchronized instrument”, Phys. Rev. Lett., Vol. 97, pp. 018002.
[46] Georges, T.M., (1973), “Infrasound from convective storms: Examining the evidence”, Rev. Geophys. Space Phys., Vol.11, pp. 571–594.
[47] Huang, C.J., Yin, H.Y., Chen, C.Y., Yeh, C.H., Wang, C.L., (2007), “Ground vibrations produced by rock motions and debris flows”, J. Geophys. Res., Vol. 112, F02014, pp.1-20.
[48] Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. & Liu, H.H., (1996), “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis”, Proc. R. Soc. London, Vol.A 454, pp.903-995.
[49] Humphries, D. W., (1966), "The Booming Sand of Korizo, Sahara, and the Squeaking Sand of Gower, S. Wales: A Comparison of the Fundamental Characteristics of Two Musical Sands". Sedimentology, Vol.6, pp.135.
[50] Itakura, Y., Kamei, N., Takahama, J. I., Nowa, Y., (1997), “Real time estimation of estimation of discharge of debris flow by an acoustic sensor”, 14th IMEKO World Congress, New Measurements-Challenges and Visions, Tampere, Finland.
[51] Itakura, Y., Koga, Y., Takahama, J. I., Nowa ,Y., (1997), "Acoustic detection sensor for debris flow," 1st International DFHM Conference, San Francisco, CA, USA.
[52] Jianjun, Q., B. Sun, W. Zhang, Y. Wang and G. Kang (1995) "Surface Texture of Quartz Grain in booming sand and its acoustic significance", Chinese Science Bulletin,Vol. 40, pp.1719.
[53] Johnson, J. B., (2001), “Generation and Propagation of Infrasonic Airwaves from Volcanic Explosions”, Ph.D. thesis, University of Washington, Seattle, Washington, USA.
[54] Keefer, D. K., R. C. Wilson, R. K. Mark, E. E. Brabb, W. M. Brown III, S.D. Ellen, E. L. Harp, G. F. Wieczorek, C. S. Alger, and R. S. Zatkin, (1987), “Real-Time Landslide Warning During Heavy Rainfall”,Science,Vol.238, pp.921-925.
[55] Kogelnig, A., Hubel, J., Surinach, E., Vilajosana, I., McArdell, B.W., (2011), “Infrasound produced by debris flow: propagation and frequency content evolution”, Nat. Hazards. DOI 10.1007/s11069-011-9741-8.
[56] Lewis, A. D., (1936), "Roaring Sands of the Kalahari Desert" ,South African Geographical Society ,Vol.19, pp.33.
[57] Mutschlecner, J.P., Whitaker, R.W., (2005) “Infrasound from earthquakes”, J Geophys. Res. 110.
[58] Okuda, S., Okunishi, K. , Suwa, H. (1980), “Observation of debris flow at Kamikamihori Valley of Mt. Yakedade” , Excursion Guide-book of the 3rd Meetingof IGU commission on field experiment in geomorphology, Disaster Prevention Research Institute, Kyoto University, Japan, pp. 127-130.
[59] Posey, J.W., Pierce, A.D., (1971),” Estimation of nuclear explosion energies from microbaragraphrecords”. Nature , Vol.232, pp.253.
[60] Reed, J.W., (1969), “Climatology of air blast propagations from nevada test site nuclear airbursts ”, Sandia National Laboratory Report SC-I.R.-69-572 m, December.
[61] Stump, B., Jun, M. S., Hayward, C., Jeon, J. S., Che, I.Y., House, S.M. and Kim, T.S., (2001), “Assessment of Seismic and Infrasound Signals in Korea with Ground Truth”, 23rd Seismic Research Review: Worldwide Monitoring of Nuclear Explosions, pp.431-439.
[62] Takahashi, T., (1991),”Debris Flow”, IAHR Monograph. Rotterdam: Balkema.
[63] Vergniolle, S., Brandeis, G., Mareschal, J.C., (1996), “Stromolian explosions 2, Eruption Dynamics from acoustic measurement” ,Journal of Geophysical Research,101(B9),20449-10466.
[64] Vriend, N.M., Hunt, M.L., Clayton, R.W., Brennen, C.E., Brantley, K.S., Ruiz-Angulo A. ,(2007),” Solving the mystery of booming sand dunes”, Geophys. Res. Lett. , Vol. 34,pp.L16306.
[65] Whitaker, R., (2007),” Infrasound signals as basis for event discriminants”. Proceedings of the 29thMonitoring Research Review, Denver, Colorado, 25–27 September 2007, 905–913.
[66] Whitaker, R. (2008), “Infrasound signals from ground-motion sources”, Proceedings of the 30th monitoring research review, Portsmouth, Virginia, 23–25 ,September 2008, pp.912–920.
[67] Zhang, S.C, Hong, Y. &Yu, B., (2004), “Detecting infrasound emission of debris flow for warning purposes”. INTERPRAEVENT 2004, section VII, pp. 359-364.
[68] Zhang, S.C., (1993), “A Comprehensive Approach to the Observation and Prevention of Debris Flows in China”, Natural Hazards, Vol. 7, pp. 1-23.
[69] 及川 純, 隅田, (1996), ” Eruption of Unzen Fugendake : Birth of new lava dome and pyroclastic flow disaster. Pyroclastic flow. Pyroclastic flow observed in the sound.”月刊 地球 ,pp.127-131.(in Japanese)
[70] 瀨尾克美,橫部幸欲, (1978), ”土砂害降雨之研究”,新防砂,第108卷,第14-18頁。(in Japanese)
指導教授 周憲德(Hsien-Ter Chou) 審核日期 2012-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明