博碩士論文 993204065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.139.55.72
姓名 李育綺(Yu-chi Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 結合溶劑蒸氣刺激及微米模板製備聚苯乙烯聚4-乙烯吡啶薄膜 之層級結構
(Hierarchical Structures of P(S-b-4VP) Thin Films Fabricated through a Combination of Solvent Annealing and Micro-Contact Imprinting)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討高分子的自組裝(self-assembly)行為再配合微接觸式壓印(micro-contact imprinting)控制對稱性雙團鏈共聚物非潤濕過程,以製備出具有微米層級結構(hierarchical structure)之高分子。實驗程序是利用具有大範圍六角有序PS陣列之基材,再藉由控制不同選擇性溶劑退火以得到不同的階層性薄膜。本實驗研究聚苯乙烯聚4乙烯吡啶(polystyrene-block-poly(4-vinylpyridine), P(S-b-4VP))在不同選擇性溶劑蒸氣刺激下表面型態的改變,以及其奈米結構受到微米陣列形狀之影響情形。當P(S-b-4VP)在四氫呋喃(THF)溶劑退火下,將形成奈米圓柱所組成之半圓液滴狀(droplet)非潤濕結構;在丙酮(acetone)及三氯甲烷(chloroform)蒸氣下則形成平行層板組成之梯田狀結構,其層板每層皆為PS-P4VP/P4VP-PS排列之完整層。相較而言,在二甲基甲醯胺(DMF)溶劑之動態退火過程時,其液滴狀非潤濕結構演化成三種微米結構,包含奈米圓球組成之梯田狀結構、奈米圓柱組成之半圓液滴狀結構以及由奈米層板組成之梯田狀結構。在DMF蒸氣下所形成之梯田狀結構,其層板厚度為PS-P4VP/P4VP-PS排列完整層之一半,故其層板每層由PS-P4VP排列之半層結構。上述奈米尺度及微米尺度之差異主要是由於在模板限制下,外在環境對高分子之刺激而回應之結果。最後我們發現在傾斜模板下退火時,液滴狀非潤濕結構會由於重力而移動,其移動情形受到溶劑蒸氣之選擇性以及內部奈米結構影響。
摘要(英) We studied the self-assembly of block copolymer thin films with a combination of micro-contact imprinting and solvent annealing. Patterned substrates were prepared by selectively grafting PS chains on SiOx/Si by micro-contact imprinting. The PS-grafted regions have a hexagonal array on SiOx/Si. After spin coating on the patterned substrates, the block copolymer would selectively wet the PS-grafted regions with solvent vapor exposure. Therefore, solvent annealing causes dewetting-induced microdroplets with a microscopic order defined by the pattern of PS-grafted substrates. In this thesis, we investigated how relief polystyrene-block-poly(4-vinylpyridine), (P(S-b-4VP)) microstructures effected the internal nanostructures and microscopic shape on PS-patterned substrates in response to the solvent vapor selectivity. Upon annealing in THF vapor, the droplets comprised of nanospheres and the shape of each droplet is hemispherical cap. Solvent annealing in chloroform and acetone vapors led to terraced stack of lamellae. Each lamellar layer has the thickness of an entire PS-P4VP/P4VP-PS layer. In a dynamic process of DMF vapor annealing, the droplets would transform into three types of microstructures. They are nanosphere-comprised terraces, nanolamella-comprised terraces and nanocylinder-comprised droplets. For DMF annealed terraces, lamellar layers comprise PS-P4VP layer indicated that the thickness of PS-P4VP layer is half of the thickness of an entire PS-P4VP/P4VP-PS layer. The changes in nanoscale and microscale structures are due to the adaption of stimuli-responsive polymer materials to the free surface under the confinement of the patterned substrates. Finally, the movement of relief microstructures on a 30°-inclined patterned substrate was found to depend on the solvent solubility and internal nanostructures.
關鍵字(中) ★ 微接觸壓印
★ 溶劑退火
★ 層級結構
關鍵字(英) ★ hierarchical structures
★ solvent anneal
★ micro-contact imprinting
論文目次 Abstract........................................i
摘要............................................iii
Table of Contents...............................v
List of Figures.................................vii
List of Tables..................................xiv
Chapter 1: Introduction.........................1
Chapter 2: Literature Review....................5
2-1 Self-Assembly at All Scales.................5
2-2 Amphiphilic Block Copolymers (a-BCPs).......6
2-3 Micelles in Dilute Solution.................7
2-3-1 Micelle Formation.........................7
2-3-2 Micelles and Selectivity of Solvent.......8
2-4 Stimuli-Responsive Polymer..................9
2-5 Applications of Micelle and Stimuli-Responses.......12
2-6 Hierarchical Self-Assembly..................16
2-8 Research Background.........................22
2-9 Motivation..................................26
Chapter 3: Experiments..........................27
3-1 Materials...................................27
3-2 Solvents and Wafer..........................27
3-3 Instruments.................................28
3-4 Samples Preparation and Experimental Methods........29
3-4-1 Substrates Cleaning.......................29
3-4-2 Surface Modification of Substrates by Spin Coating and by Micro-Contact Imprinting.....................29
3-4-3 Film Preparation and Annealing............32
3-5 Instrumental Analysis.......................33
3-5-1 Atomic Force Microscopy (AFM).............33
3-5-2 Optical Microscopy (OM)...................34
3-5-3 Small Angle X-Ray Scattering (SAXS).......35
Chapter 4 : Results and Discussion..............36
4-1 Micellization of P(S-b-4VP) in Solutions....36
4-2 Transitions of Micelles on Bare and PS-Grafted Substrates in Solvent Vapors of Varied Selectivity......38
4-3 Hierarchical Assembly of Micelles on Micro-Patterned Substrates in Solvent Vapors of Varied Selectivity......51
4-4 Movement of Droplets and Terraced Microstructures on a 30°-Inclined, PS-Patterned Substrate....................64
Conclusion......................................69
Future Work.....................................70
References......................................71
Appendix........................................84
參考文獻 [1] Lehn, J. M. “Toward Self-Organization and Complex Matter”, Science, 295, 2400-2403(2002).
[2] Whitesides, G. M.; Grzybowski, B. “Self-Assembly at All Scales”, Science, 295, 2418-2421(2002).
[3] Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. “Emerging Applications of Stimuli-Responsive Polymer Materials” Nat. Mater., 9, 101–113(2010).
[4] Kim, T. H.; Hwang, J.; Hwang, W. S.; Huh, J.; Kim, H. C.; Kim, S. H.; Hong, J. M.; Thomas, E. L.; Park, C. “Hierarchical Ordering of Block Copolymer Nanostructures by Solvent Annealing Combined with Controlled Dewetting”, Adv. Mater., 20, 522-527(2008).
[5] Kim, T. H.; Huh, J.; Park, C. “Micropatterns of Hierarchical Self-Assembled Block Copolymer Droplets with Solvent-Assisted Wetting of Brush Monolayers”, Macromolecules, 43, 5352-5357(2010).
[6] Kim, B. H.; Shin D. O.; Jeong, S. J.; Koo, C. M.; Jeon, S. C.; Huang, W. J.; Lee, S.; Lee, G. L.; Kim. S. O. “Hierarchical Self-Assembly of Block Copolymers for Lithography-Free Nanopatterning”, Adv Mater., 20, 2303-2307(2008).
[7] Kim, B. H.; Lee, H. M.; Lee, J. H.; Son, S. W.; Jeong, S. J.; Lee, S.; Lee, D.; Kwak, S. U.; Jeong, H.; Shin, H.; Yoon, J. B.; Lavrentovich, O. D.; Kim, S. O. “Spontaneous Lamellar Alignment in Thickness-Modulated Block Copolymer Films”, Adv. Func. Mater., 19, 2584-2591(2009).
[8] Croll, A. B.; Massa, M. V.; Masten, M. W.; Dalnoki-Veress, K. “Droplets Shape of an Anisotropic Liquid”, Phys. Rev. Lett., 97, 204502_1-204502_4 (2006).
[9] Kim, J. U.; Matsen, M. W. “Droplets of Structured Fluid on a Flat Substrate”, Soft Matter, 5, 2889-2895(2009).
[10] Farrell, R. A.; Kehagias, N.; Shaw, M. T.; Reboud, V.; Zelsmann, M.; Holmes, J. D.; Torres, C. M. S.; Morris, M. A. “Surface-Directed Dewetting of a Block Copolymer for Fabricated Highly Uniform Nanostructured Microdroplets and Concentric Nanorings”, ACS Nano, 5, 1073-1085(2011).
[11] Mokarrian-Tobari, P.; Collins, T. W.; Holmes, J. D.; Morris, M. A. “Cylical ‘Flipping’ of Morphology in Block Copolymer Thin Films” ACS Nano, 5, 4617-4623(2011).
[12] Turner, M. S. “Equilibrium Properties of a Diblock Copolymer Lamellar Phase Confined between Flat Plates”, Phys. Rev. Lett., 69, 1788-1791(1992).
[13] Carvalho, B. L.; Thomas, E. L. “Morphology of Steps in Terraced Block Copolymer Films”, Phys. Rev. Lett., 73, 3321-3324(1994).
[14] Qiao, Y.; Wang, D.; Buriak, J. M. “Block Copolymer Templated Etching on Silicon”, Nano Lett., 7, 464-469(2007).
[15] Park, S.; Wang, J. Y.; Kim, B.; Russell T. P. “From Nanorings to Nanodots by Patterning with Block Copolymers”, Nano Lett., 8, 1667-1672(2008).
[16] Park, S.; Kim, B.; Wang, J. Y.; Russell T. P. “Fabrication of Highly Ordered Silicon Oxide Dots and Stripes from Block Copolymer Thin Films”, Adv. Mater., 20, 681-685(2008).
[17] Aizawa, M.; Buriak, J. M. “Block Copolymer-Templated Chemistry on Si, Ge, InP, and GaAs Surfaces”, J. Am. Chem. Soc., 127, 8932-8933(2005).
[18] Aizawa, M.; Buriak, J. M. “lock Copolymer Templated Chemistry for the Formation of Metallic Nanoparticle Arrays on Semiconductor Surfaces”, Chem. Mater., 19, 5090-5101(2007).
[19] Kim, Y.; Han, H.; Kim, Y.; Lee, W.; Alexe, M.; Baik, S.; Kim, J. K. “Ultrahigh Density Array of Epitaxial Ferroelectric Nanoislands on Conducting Substrates”, Nano Lett., 10, 2141-2146(2010).
[20] Yun, S. H.; Yoo, S. I.; Jung, J. C.; Zin, W. C.; Sohn, B. H. “Highly Ordered Arrays of Nanoparticles in Large Areas fropm Diblock Copolymer Micelles in Hexagonal Self-Assembly”, Chem. Mater., 18, 5646-5648(2006).
[21] Boyen, H. G.; Kästle, G.; Zürn, K.; Herzog, T.; Weigl, F.; Ziemann, P.; Mayer, O.; Jerome, C.; Möller, M.; Spatz, J. P.; Garnier, M. G.; Oelhafen, P. “A Micellar Route to Ordered Arrays of Magnetic Nanoparticles: From Size-Selected Pure Cobalt Dots to Cobalt–Cobalt Oxide Core–Shell Systems”, Adv. Func. Mater., 13, 359-364(2003).
[22] Spatz, J. P.; Chan, V. Z. H.; Mö?mer, S.; Kamm, F. M.; Plettl, A.; Ziemann, P.; Möller, M. “A Combined Top-Down/Bottom-Up Approach to the Microscopic Localization of Metallic Nanodots”, Adv. Mater., 14, 1827-1832(2002).
[23] Lohmueller, T.; Bock, E.; Spatz, J. P. “Synthesis of Quasi-Hexagonal Ordered Arrays of Metallic Nanoparticles with Tuneable Particle Size”, Adv. Mater., 20, 2297-2302(2008).
[24] Chai, J.; Buriak, J. M. “Using Cylindrical Domains of Block Copolymer to Self-Assembly and Align Metallic Nanowires”, ACS Nano, 2, 489-501(2008).
[25] Peonemann, K. V.; Abetz, V.; Simon, P. F. W. “Asymmetric Superstructure Formed in a Block Copolymer via Phase Separation”, Nat. Mater., 6, 992-996 (2007).
[26] Förster, S.; Antonietti, M. “Amphiphilic Block Copolymer in Structure-Controlled Nanomaterial Hybrids”, Adv. Mater., 10, 195-217 (1998).
[27] Förster, S.; Plantenberg, T. “From Self-Organizing Polymers to Nanohybrid and Biomaterials”, Angew. Chem. Int. Ed., 41, 688-714 (2002).
[28] Numes, S. P.; Sougrat, R.; Hooghan, B.; Anjum, D. H.; Behzad, A. R.; Zhao, L.; Pradeep, N.; Pinnau, I.; Vainio, U.; Peinemann, K. V. “Ultraporous Films with Uniform Nanochannels by Block Copolymer Micelles Assembly”, Macromolecules, 43, 8079-8085 (2010).
[29] Tseng, W. H.; Chen, C. K.; Chiang, Y. W.; Ho, R. M.; Akasaka S.; Hasegawa, H. “Helical Nanocomposites from Chiral Block Copolymer Templates”, J. Am. Chem. Soc., 131, 1356-1357(2009).
[30] Hsueh, H. Y.; Chen, H. Y.; She, M. S.; Chen, C. K.; Ho, R. M.; Gwo, S.; Hasegawa, H.; Thomas, E. L. “Inorganic Gyroid with Exceptionally Low Refractive Index from Block Copolymer Templating”, Nano Lett., 10, 4994-5000(2010).
[31] Segalman, R. A.; Yokoyama, H.; Kramer, E. J. “Graphoepitaxy of Spherical Domain Block Copolymer Films”, Adv. Mater., 13, 1152-1155(2001).
[32] Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. “Fabrication of Nanostructure with Long-Range Order Using Block Copolymer Lithography”, Appl. Phys. Lett., 81, 3657-3659(2002).
[33] Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; de Pablo, J. J.; Nealey, P. F. “Epitaxial Self-Assembly of Block Copolymers on Lithographically Defined Nanopattern Substrates”, Nature, 424, 411-414 (2003).
[34] Park, S.; Lee, D. H.; Xu, J.; Kim, B.; Hong, S. W.; Jeong, U.; Xu, T.; Russell, T. P. “Macroscopic 10-Terabit-per-Square-Inch Arrays from Block Copolymer with Lateral Order”, Science, 323, 1030-1033(2009).
[35] Park, S.; Kim, B.; Xu, J.; Hofmann, T.; Ocko, B. M.; Russell, T. P. “Lateral Ordering of Cylindrical Microdomains Under Solvent Vapor”, Macromolecules, 42, 1278-1284(2009).
[36] Park, S.; Wang, J. Y.; Kim, B.; Chen, W.; Russell, T. P. “Solvent-Induced Transition from Micelles in Solution to Cylindrical Microdomains in Diblock Copolymer Thin Films”, Macromolecules, 40, 9059-9063(2007).
[37] Limary, R.; Green, P. F. “Dewetting Instability in Thin Block Copolymer Films: Nucleation and Growth”, Langmuir, 15, 5617-5622 (1999).
[38] Limary, R.; Green, P. F. “Hierarchical Pattern Formation in Thin Film Diblock Copolymers above the Order-Disorder Transition Temperature”, Macromolecules, 32, 8167-8172(1999).
[39] Masson, J. L.; Limary, R.; Green, P. F. “Pattern Formation and Evolution in Diblock Copolymer Thin Films above the Order-Disorder Transistion”, J. Chem. Phys., 114, 10963-10967(2001).
[40] Coulon, G.; Russell, T. P.; Deline, V. R.; Green, P. F. “Surface-Induce Orientation of Symmertic, Diblock Copolymers: a Secondary Ion Mass-Spectrometry Study”, Macromolecules, 22, 2581-2589(1989).
[41] Anastasiadis, S. H.; Russell, T. P.; Satija, S. K.; Majkrzak, C. F. “Neutron Reflectivity Studies of the Surface-Induced Ordering of Diblock Copolymer Films”, Phys. Rev. Lett., 62, 1852-1855(1989).
[42] Henkee, C. S.; Thomas, E. L.; Fetters. L. J. “The Effect of Surface Constraints on the Ordering of Block Copolymer Domains”, J. Mater. Sci., 23, 1685-1694 (1988).
[43] Sun, Y. S.; Chien, S. W.; Liou, J. Y., “Probing Relief Terraces in Destabilized Thin Films of an Asymmetric Block Copolymer with Grazing-Incidence Small-Angle X-Ray Scattering”, Macromolecules, 43, 7250-7260(2010).
[44] Sun, Y. S.; Chien, S. W.; Wu, P. J. “Effects of Film Instability on Roughness Correlation and Nanodomain Ordering in Ultrathin Films of Asymmetric Block Copolymer”, Macromolecules, 43, 5016-5023 (2010).
[45] Sun, Y. S.; Chien, S.W.; Liou, J. Y.; Su, C. H.; Liao, K. F. “Film Instability Induced Evolution of Hierarchical Structures in Annealed Ultrathin Films of an Asymmetric Block Copolymer on Polar Substrates”, Polymer, 52, 1180-1190(2011).
[46] Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. “Spatiotemporal Concentration Patterns in Surface Reaction: Propagating and Standing Waves, Rotating Spirals, and Turbulance”, Phys. Rev. Lett., 65, 3013-3016(1990).
[47] Hess, B. “Periodic Patterns in Biology”, Naturwissenschaften, 87, 199-211 (2000).
[48] Desiraju, G. R. in Crystal Engineering: The Design of Organic Solids, Elsevier, New York, 1989.
[49] Isaacs, L.; Chin, D. N.; Bowden, N.; Xia, Y.; Whitesides, G. M. in Supramolecular Technology, D. N. Reinhoudt, Ed. New York: Wiley; 1999. pp. 1-46.
[50] Gao, Zhisheng.; Eisenberg, Adi. “A Model of Micellization for Block Copolymers in Solutions”, Macromolecules, 26, 7353-7360(1993).
[51] Tuzar, Z.; Kratochvil, P. “Block and Grafted Copolymer Micelles in Solution”, Adv. Colloid Interface Sci., 6, 201-232(1978).
[52] Liu, G.; Ding, J.; Guo, A.; Herfort, M.; Bazett-Jones, D. “Potential Skin Layers for Membranes with Tunable Nanochannels”, Macromolecules, 30, 1851-1853(1997).
[53] Yan, X.; Liu, F.; Li, Z.; Liu, G. “Poly(acrylic acid)-Lined Nanotubes of Poly(butyl methacrylate)-block-poly(2-cinnamoyloxyethyl methacrylate”, Macromolecules, 34, 9112 -9116(2001).
[54] Jenekhe, S. A.; Chen, X. L. “Self-Assembly of Ordered Microporous Materials from Roid-Coil Block Copolymer”, Science, 283, 372-375 (1999).
[55] Liu, G.; Qiao, L.; Guo, A. “Diblock Copolymer Nanofibers”, Macromolecules, 29, 5508-5510(1996).
[56] Zhang, L.; Eisenberg, A. “Morphogenic Effect of Added Ions in Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers in Solutions”, Macromolecules, 29, 8805-8815(1996).
[57] Borisov, O. V.; Zhulina, E. B. “Morphology of Micelles Formed by Diblock Copolymer with a Polyelectrolyte Block”, Macromolecules, 36, 10029-10036 (2003).
[58] Zhou, Z.; Li, Z.; Ren, Y.; Hillmyer, M. A.; Lodge, T. P. “Micellar Shape Change and Internal Segregation Induced by Chemical Modification of a Tryptych Block Copolymer Surfactant”, J. Am. Chem. Soc., 125 , 10182-10183(2003).
[59] Park, S. Y.; Sul, W. H.; Chang, Y.J “A Study on the Selectivity of Toluene/Ethanol Mixtures on the Micellar and Ordered Structures of Poly(styrene-b-4-vinylpyridine) Using Small-Angle X-Ray Scattering, Generalized Indirect Fourier Transform, and Transmission Electron Microscopy”, Macromolecules, 40, 3757-3764(2007)
[60] Webber, G. B.; Wanless E. J.; Armes, S. P.; Tang, Y.; Li, Y.; Biggs, S. “Nano-Anemones: Stimulus-Responsive Copolymer-Micelle Surface”, Adv. Mater., 16, 1794-1798(2004).
[61] Motornov, M.; Sheparovych, R.; Lupitskyy, R.; MacWilliams E.; Hoy, O.; Luzinov, I.; Minko S. “Stimuli-Responsive Colloidal System from Mixed Brush-Coated Nanoparticles”, Adv. Funct. Mater., 17, 2307-2314(2007).
[62] Yusa, S.; Yamago, S.; Sugahara, M.; Morikawa, S.; Yamamoto T.; Morishima Y. “Thermo-Responsive Diblock Copolymers of Poly(N-isopropylacrylamide) and Poly(N-vinyl-2-pyrroidone) Synthesized via Organotellurium-Mediated Controlled Radical Polymerization(TERP)”, Macromolecules, 40, 5907-5919(2007).
[63] Xu, C.; Fu, X.; Fryd, M.; Xu, S.; Wayland, B.B.; Winey, K. I.; Composto, R. J. “Reversible Stimuli-Responsive Nanostructures Assembled from Amphiphilic Block Copolymers”, Nano Lett., 6, 282-287(2006).
[64] Gupta, S.; Agrawal, M.; Uhlmann, P.; Simin, F.; Oertel, U.; Stamm, M. “Gold Nanoparticles Immobilized on Stimuli Responsive Polymer Brushes as Nanosensors”, Macromolecules, 41, 8152-8158(2008).
[65] Wang, G. ; Tong, X. ; Zhao, Y. “Preparation of Azobenzene- Containing Amphiphilic Diblock Copolymers for Light-Responsive Micellar Aggregates”, Macromolecules, 37, 8911-8917(2004).
[66] Zhao, Y. “Light-Responsive Block Copolymer Micelles”, Macromolecules, 45, 3647-3657(2012).
[67] Amir, R. J. ; Zhong, S. ; Pochan, D. J. ; Hawker, C. J. “Enzymatically Triggered Self-Assembly of Block Copolymers”, J. Am. Chem. Soc., 131, 13949-13951(2009).
[68] Eloi, J. C.; Rider, D. A.; Cambridge, G.; Whittell, G. R.; Winnik, M. A.; Manners, I. “Stimulus-Responsive Self-Assembly: Reversible, Redox-Controlled Micellization of Polyferrocenylsilane Diblock Copolymers”, J. Am. Chem. Soc., 133, 8903-8919(2011).
[69] Tokarev, I.; Minko, S. “Multiresponsive, Hierarchically Structured Membranes: New, Challenging, Biomimetic Materials for Biosensors, Controlled Release, Biochemical Gates, and Nanoreactors”, Adv. Mater., 21, 241-247(2009).
[70] Wu, X. L.; Kim, J. H.; Koo, H.; Bae, S. M.; Shin, H.; Kim M. S.; Lee, B. H.; Park, R. W.; Kim, I. S.; Choi, K.; Kwon, I. C.; Kim, K.; Lee, D. S. “Tumor-Targeting Peptide Conjugated pH-Responsive Micelles as a Potential Drug Carrier for Cancer Therapy”, Bioconjugate Chem., 21, 208-213(2010).
[71] Nandan, B.; Gowd, E. B., Bigall, N.C.; Eychmüller, A.; Formanek, P.; Simon, P.; Stamm, M. “Arrays of Inorganic Nanodots and Nanowires Using Nanotemplates Based on Switchable Block Copolymer Supramolecular Assemblies”, Adv. Funct. Mater., 19, 2805-2811 (2009).
[72] Li, X.; Han, Y. “Tunable Wavelength Antireflective Film by Non-Solvent-Induced Phase Separation of Amphiphilic Block Copolymer Micelle Solution”, J. Mater. Chem., 21, 18024-18033 (2011).
[73] Nunes, S. P.; Behzad, A.R.; Hooghan, B.; Sougrat, R.; Karunakaran, M.; Pradeep, N.; Vainio, U.; Peinemann, K. V. “Switchable pH-Responsive Polymeric Membranes Prepared via Block Copolymer Micelle Assembly”, ACS Nano, 5, 3516-3522(2011).
[74] Chang, C. Y.; Wu, P. J.; Sum, Y. S. “Kinetically Controlled Self-Assembly of Monolayered Micelle Films of P(S-b-4VP) on Bare and PS-Grafted Substrates”, Soft Matter, 7, 9140-9147(2011).
[75] Chang, C. Y.; Lee, Y. C.; Wu, P. J.; Liou, J. Y.; Sum, Y. S.; Ko, B. T. “Micellar Transitions in Solvent-Annealed Thin Films of an Amphiphilic Block Copolymer Controlled with Tunable Surface Fields”, Langmuir, 27, 14545-14553(2011).
[76] Lide, D. R. Handbook of Chemistry and Physics, 90th ed.;CRC Press: Florida, 2009.
[77] Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principle of Instrumental Analysis, 6th ed.; Thomson Book: California, 2007
[78] Frömsdorf, A.; Kornowski, A.; Pütter, S.; Stillrich, H.; Lee, L. T. “Highly Ordered Nanostructured Surfaces Obtained with Silica-Filled Diblock Copolymer Micelles as Templates”, Small, 3, 880-889(2007).
[79] Marton, A. F. M. “Solubility Parameters”, Chem. Rev., 75, 731-753(1975).
[80] Park, J.; Kim, M. Y.; Lee, Y. W.; Lim, J. S. Proceedings of the 4th International Conference on Separation Science and Techonology; Tong, Z.; Kim,S. H., Eds.; World Scientific Publishing Co. Pte. Ltd: Singapore, 2004
[81] Park, S.; Wang, J. Y.; Kim, B.; Chen, W.; Russell, T. P. “A Simple Route to Highly Oriented and Ordered Nanoporous Block Copolymer Templates”, ACS Nano, 2, 766-772(2008).
[82] Park, S.; Kim, B.; Yavuzcetin, O.; Tuominen, M.; Russell, T. P. “Ordering of PS-b-P4VP on Patterned Silicon Surfaces”, ACS Nano, 2, 1363-1370(2008).
[83] Gowd, E. B.; Nandan, B.; Vyas, M. K.; Bigall, N. C.; Eychmüller, A.; Schlörb, H.; Stamm, M. “Highly Ordered Palladium Nanodots and Nanowires from Switchable Block Copolymer Thin Films”, Nanotechnology, 20, 415302_1-415302_10(2009).
[84] Gowd, E. B.; Böhme, M.; Stamm, M. “In Situ GISAXS Study on Solvent Vapour Induced Orientation Switching in PS-b-P4VP Block Copolymer Thin Films”, IOP Conf. Ser.: Mater. Sci. Eng., 14, 012015_1-012015_6.
[85] Lodge, T. P.; Pudil, B.; Hanley, K. J. “The Full Phase Behavior for Block Copolymers in Solvents of Varing Selectivity”, Macromolecules, 35, 4707-4717(2002).
[86] Hanley K. J.; Lodge, T. P.; Huang, C. I. “Phase Behavior of a Block Copolymer in Solvents of Varing Selectivity”, Macromolecules, 33, 5918-5931(2000).
[87] Nagarajan, R.; Ganesh, K. “Block Copolymer Self-Assembly in Selective Solvents: Spherical Micelles with Segregated Cores”, J. Chem. Phys., 90, 5843-5856(1989).
[88] van Zoelen, W.; Polushkin, E.; ten Brinke, G. “Hierarchical Terrace Formation in PS-b-P4VP(PDP) Supramolecular Thin Films”, Macromolecules, 41, 8807-8814(2008).
[89] van Zoelen, W.; Asumaa, T.; Roukolainen, J.; Ikkala, O,; ten Brinke, G. “Phase Behavior of Solvent Vapor Annealed Thin Films of PS-b-P4VP(PDP) Supramolecules”, Macromolecules, 41, 3199-3208 (2008).
[90] Grest, G. “Interfacial Sliding of Polymer Brushes: A Molecular Dynamics Simulation”, Phys. Rev. Lett., 76, 4979-4982(1996).
指導教授 孫亞賢(Ya-sen Sun) 審核日期 2012-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明