博碩士論文 993211005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.133.100.106
姓名 陳卓仁(Gho-Jen Chen)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 醫療載具的單眼視覺行人偵測
(Monocular-vision Pedestrian Detection for Medical Vehicles)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 人工膝關節術後定位系統
★ 人工髖關節雙軸向動態磨耗試驗平台開發★ 大型犬人工髖關節之應力分析
★ 腰椎人工椎間盤之運動軌跡分析★ 骨釘骨板鎖固機構之冷焊現象
★ 人工牙根與骨骼介面之生物力學研究★ 熱交換器之熱換管及端板擴管殘留應力分析
★ 耦合有限元素法與邊界積分式於三維彈性力學的應用★ 邊界積分式於剛體聲場散射問題的應用
★ 虛擬觸覺系統中的力回饋修正與展現★ 多頻譜衛星影像融合與紅外線影像合成
★ 腹腔鏡膽囊切除手術模擬系統★ 飛行模擬系統中的動態載入式多重解析度地形模塑
★ 以凌波為基礎的多重解析度地形模塑與貼圖★ 多重解析度光流分析與深度計算
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著交通工具使用的頻繁與流行,交通事故成為廣受國人注意的安全議題。交通事故中若波及行人,不論對駕駛人或行人都將造成相當嚴重的損傷。本研究中針對醫療載具;例如,救護用車、殘障專用車輛、輪椅、輔助行動工具等。這類載具的駕駛人需要投注更多專注力在駕駛或是本身注意能力、反應能力較一般人弱勢,我們在本研究中提出一個使用單眼視覺的行人偵測系統,並應用於複雜的校園、街道環境中,以避免發生與行人碰撞的事故。
在本論文中,我們以梯度方向分佈圖 (Histograms of oriented gradients, HOG) 作為表達行人特徵的方式,行人分類學習步驟中,我們引入支援向量學習機 (Support Vector Machine, SVM) 作為學習分類器。基於單眼視覺的行人偵測需要產生大量的候選行人視窗供給分類器作判別,然而,HOG 特徵是以累積視窗內像素點各方向的邊強度取得,當候選視窗數量眾多,累積所需得執行時間將會大幅升高,本研究使用行人偵測帶 (pedestrian detection strip, PDS) 作為第一步蒐尋包含行人位置的 ROI 區塊,再引入距離轉換 (distance transform, DT) 模板作第一步的候選行人視窗篩選,通過初步篩選後的視窗再交給 SVM 作最後的判定。
在行人偵測的結果方面,在巷弄間複雜的背景、校園內行人數多的情況下、以及光照不同的情形下,交給 SVM 分類的行人視窗辨識效果都有 94% 以上的正確率,而在一般的情況下影格中出現行人的偵測率也約有 80% 以上,而每個影格中出現 false positive 的偵測錯誤也指有 0.3 個左右。
摘要(英) With frequent and popular use of transport, traffic accidents become great issues for people to pay attention. If there were pedestrians injured in an accident, whether drivers or pedestrians will cause very serious loss. In this study, we pay more attention to some medical vehicles, such as ambulance, disabled vehicle, wheelchair and action assistance tools. For those vehicles, the drivers should pay more attention in the driving or the drivers would have weaker reaction ability than a normal person. We proposed a pedestrian detection system using monocular vision. To avoid collision accident, we applied our system to some complex environment, such as campus and street situation.
In this paper, we use Histograms of oriented gradients (HOG) as a way of pedestrian characteristics expression. We introduce the support vector machine (SVM) for pedestrian classification learning. The classifier training has to generate many candidate of pedestrian window. However, HOG features are accumulated by each direction of edge intensity. It will cause the time of process rising while the number of candidate become larger. The research employs the pedestrian detection strip (PDS) as the first seeking-step of interesting region. Then we using distance transform (DT) template as selection function to sift the candidate windows of pedestrian out. Finally we constructed the HOG feature of each window and used the SVM classifier for final judgment. In the results, we have More than 94% of accuracy with SVM classifier of pedestrian detection. Other side, our detection rate of pedestrian is above 80% and the detection error of false positive in each frame is mean about 0.3 / frame.
關鍵字(中) ★ 距離轉換
★ 行人偵測
★ 梯度方向分佈圖
關鍵字(英) ★ pedestrian detection
★ distance transform
★ histograms of oriented gradients
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 研究困難與挑戰 2
1.3 系統概述 4
1.4 論文架構 5
第二章 相關研究 8
2.1 靜止攝影機偵測技術 8
2.2 動態攝影機偵測技術 11
第三章 行人候選區塊選取 13
3.1 行人偵測帶 13
3.2 ROI區域選取 15
3.2.1 累計 PDS 垂直邊資訊 15
3.2.2 區域最大值演算法 16
3.2.3 定義 ROI 區域 19
3.3 計算梯度圖 21
3.4 行人候選視窗產生 23
第四章 行人特徵 24
4.1 距離轉換 24
4.1.1 距離轉換的定義 24
4.1.2 距離轉換演算法 25
4.1.3 DT 模板比對 26
4.2 梯度方向分佈圖 28
4.2.1 HOG 特徵表示 28
4.2.2 特徵統計方式 30
4.2.3 積分影像 33
第五章 離線資料庫建立 36
5.1 距離轉換模板 36
5.2 分類器 41
5.2.1 SVM 分類器簡介 41
5.2.2 行人樣本 44
5.2.3 SVM 訓練 45
第六章 實驗與討論 47
6.1 實驗設備與環境描述 47
6.2 實驗結果 49
6.3 偵測率分析 53
6.4 不同狀況下的比較 55
6.5 討論 63
第七章 結論與未來展望 66
參考文獻 68
參考文獻 [1] Agarwal, S., A. Awan, and D. Roth, ’’Learning to detect objects in images via a sparse, part-based representation,’’ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.26, no.11, pp.1475-1490, 2004.
[2] Ahonen, T., A. Hadid, and M. Pietikinen, ’’Face recognition with local binary patterns,’’ in proc. 8th European Conf. on Computer Vision, Prague, Czech Republic, May.11-14, 2004, pp.469-481.
[3] Ahonen, T., A. Hadid, and M. Pietikinen, ’’Face description with local binary patterns: application to face recognition,’’ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.28, no.12, pp.2037-3041, 2006.
[4] Alonso, I. P., D. F. Llorca, and M. Á . Sotelo, ’’Combination of feature extraction methods for SVM pedestrian detection,’’ IEEE Trans. Intelligent Transportation System, vol.8, no.2, pp.292-307, 2007.
[5] An, T.-K. and M.-H. Kim, ’’A new diverse AdaBoost classifier,’’ in Proc. Int. Conf. Artificial Intelligence and Computational Intelligence, Sanya, China, Oct.23-24, 2010, pp.359-363.
[6] Bertozzi, M., A. Broggi, M. Del Rose, M. Felisa, A. Rakotomamonjy, and F. Suard, ’’A pedestrian detector using histograms of oriented gradients and a support vector machine classifier,’’ in Proc. IEEE Conf. Intelligent Transportation Systems, Seattle, WA., Sep.30-Oct.3, 2007, pp.143-148.
[7] Boult, T.E., R. Micheals, X. Gao, P. Lewis, C. Power, W. Yin, and A. Erkan, “Frame-rate omnidirectional surveillance and tracking of camouflaged and occluded targets,” in Proc. 2nd IEEE Workshop on Visual Surveillance, Fort Collins, CO, Jun.25-27, 1999, pp.48-55.
[8] Brémond, F. and M. Thonnat, “Tracking multiple nonrigid objects in video sequences,” IEEE Trans. on Circuits and System for Video Technology, vol.8, no.5, pp.585-591, Sep. 1998.
[9] Chen, C. H. and D. L. Yang, "Fast algorithm and its systolic realization for distance transformation," IEE Proc. Computers and Digital Techniques, vol.143, no.3, pp.168-173, 1996.
[10] Cheng, Y., ’’Mean shift, mode seeking, and clustering,’’ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.17, no.8, pp.790-799, 1995.
[11] Cutler, R. and L. Davis, “View-based detection and analysis of periodic motion,” in Proc. 14th IEEE Int’l Conf. on Pattern Recognition, Brisbane, Australia, Aug.16-20, 1998, pp.495-500.
[12] Dahua, L. and T. Xiaoou, ’’Quality-driven face occlusion detection and recovery,’’ in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Minneapolis, Minnesota, June 18-23, 2007, pp.1-7.
[13] Dalad, N. and B. Triggs, ’’Histograms of oriented gradients for human detection,’’ in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, San Diego, CA, June 20-26, 2005, pp.886-893.
[14] Enzweiler, M., P. Kanter, and D.M. Gavrila, ’’Monocular pedestrian recognition using motion parallax,’’ in Proc. IEEE Conf. Intelligent Vehicles Symp., Eindhoven, The Netherlands, June 4-6, 2008, pp.792-797.
[15] Enzweiler, M. and D.M. Gavrila, ’’Monocular pedestrian detection: survey and experiments,’’ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.31, no.12, pp.2179-2195, 2008.
[16] He, D.-C. and L. Wang, ’’Texture unit, texture spectrum, and texture analysis,’’ IEEE Trans. Geoscience and Remote Sensing, vol.28, no.4, pp.509-512, 1990.
[17] Heikkilä, J. and O. Silvén, “A real-time system for monitoring of cyclists and pedestrians,” in Proc. 2nd IEEE Workshop on Visual Surveillance, Fort Collins, CO, Jun.25-27, 1999, pp.74-81.
[18] Kobayashi, T., A. Hidaka, and T. Kurita, ’’Selection of histograms of oriented gradients features for pedestrian detection,’’ in Proc.14th Int. Conf. Neural Information Processing, Kitakyushu, Japan, Nov.13-16, 2007, pp.598-607.
[19] Leibe, B., E. Seemann, and B. Schiele, ’’Pedestrian detection in crowded scenes,’’ in Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Diego, CA, June 20-26, 2005, pp.878-885.
[20] Ma G., D. Muller, S.-B. park, S. Muller-Schneiders, and A. Kummert, ’’pedestrian detection using a single monochrome camera,’’ IET Intelligent Transport Systems, vol.3, pp. 42-56, March 2009.
[21] Mohan, A., C. Papageorgiou, and T. Poggio, ’’Example-based object detection in images by components,’’ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.23, no.4 pp.349-361, 2001.
[22] Oliver, N. M., B. Rosario, and A. P. Pentland, “A bayesian computer vision system for modeling human interactions,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.22, no.8, pp.831-843, Aug. 2000.
[23] Rehg, J. M., M. Loughlin and K. Waters, “Vision for a smart kiosk,” IEEE Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, Jun.17-19, 1997, pp.690-696.
[24] Sechidis, L. A, P. Patias and V. Tsioukas, “Low-level tracking of multiple objects,” in Proc. Workshop on Non-rigid Motion, Nov.1994, pp.77-82.
[25] Suard, F., A. Rakotomamonjy, A. Bensrhair, and A. Broggi, ’’Pedestrian detection using infrared images and histograms of oriented gradients,’’ in Proc. IEEE Conf. Intelligent Vehicles Symp., Tokyo, Japan, June 13-15, 2006, pp.206-212.
[26] Tanaka, K., T. Kurita, F. Meyer, L. Berthouze, and T. Kawabe, ’’Stepwise feature selection by cross validation for egg-based brain computer Interface,’’ in Proc. Int. Joint Conf. on Neural Networks, Vancouver, Canada, July 16-21, 2006, pp.9422–9427.
[27] Tou, J. T. and R. C. Gonazalez, Pattern Recognition Principles, Addison-Wesley, Canada, 1974, Ch.3, pp.90-93.
[28] Vapnik, V.N., The Nature of Statistical Learning Theory, Springer, Berlin, 1995.
[29] Viola, P. and M. J. Jones, "Robust real-time object detection," Int. Journal of Computer Vision, vol.57, no.2, pp.37-154, 2001.
[30] Viola, P., M. J. Jones, and D. Snow, "Detecting pedestrians usin patterns of motion and appearance," in Proc. IEEE Int. Conf. Computer Vision, Nice, France, Oct.13-16, 2003, pp.734-741.
[31] Viola, P. and M. J. Jones, "Robust real-time face detection," Int. Journal of Computer Vision, vol.57 no.2, pp.137-154, 2004.
[32] Wang, X., T. X. Han, and S. Yan, "An HOG-LBP human detector with partial occlusion handling," in proc. IEEE 12th Int. Conf. Computer Vision, Kyoto, Japan, Sep.29-Oct.2, 2009, pp.32-39.
[33] Wren, C. R., A. Azarbayejani, T. Darrell, and A.P. Pentland, “Pfinder: real-time tracking of the human body,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.19, no.7, pp.780-785, July 1997.
[34] Wu, B. and R. Nevatia, "Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors," in Proc. IEEE Int. Conf. on Computer Vision, Beijing, China, Oct.17-20, 2005, pp.90-97.
[35] Wu, B. and R. Nevatia, "Tracking of multiple, partially occluded humans based on static body part detection," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, NY, June 17-22, 2006, pp.951-958.
[36] Zhu, Q., A. Shai, M.-C. Yeh, and K.-T. Cheng, "Fast human detection using a cascade of histograms of oriented gradients," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, NY, June 17-22, 2006, pp.1491-1498.
指導教授 曾定章、鄔蜀威
(Din-Chang Tseng、Shu-Wei Wu)
審核日期 2012-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明