博碩士論文 993204053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:52.15.207.126
姓名 王駿傑(Jun-Jie Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 異丙基烯醯胺與磺基甜菜鹼共聚水凝膠之製備與性質研究及其於藥物控制釋放之行為
(Preparation and Properties of Poly(N-isopropylacrylamide-co- sulfobetaine methacrylate) Hydrogels for Swelling-Controlled Drug Delivery Applications)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗的水膠製備是利用自由基聚合法之方式合成,選用具溫度敏感性之單體-異丙基烯醯胺(N-isopropylacrylamide,NIPAAm)與雙離子性之單體-硫代甜菜鹼 (sulfobetaine methacrylate,SBMA),交聯劑為N,N'-methylene-bis-acrylamide,製備了三種NIPAAm/SBMA之共聚水膠並控制總單體濃度為10 wt %,其中單體之莫耳比分別為95:5,90:10與 80:20 mol %。此外,我們也製備了未含SBMA組成的非離子性水膠poly(NIPAAm)來當作一對照組。藉此探討水膠內NIPAAm與SBMA之單體組成在不同溫度下的膨潤機制與溶脹時蛋白質之釋放行為。
由作用力參數χ計算的結果顯示:隨著溫度的增加,會造成水膠與水分子間的交互作用力變弱,然而當SBMA組成的添加能提高水膠與溶劑間的交互作用力。藉由焓貢獻χH與熵貢獻χS之作用力參數可進一步得到水膠的混合焓(?H)與混合熵(?S)。我們發現溫度從25℃升至45℃時,poly(NIPAAm)具有相較於poly(NIPAAm-co-SBMA)水膠較大之亂度減少趨勢。而從χ值與亂度的結果可以得知高分子鏈之疏水性變強,使得鏈周圍形成許多有序排列的水分子,因而造成水膠在高溫之膨潤程度變小。
動態膨潤實驗的結果發現,poly(NIPAAm)水膠是以非費克擴散的方式進行溶脹;當SBMA組成的添加能提升凝膠高分子鏈鬆弛的速率,使得溶脹機制轉變為費克擴散的行為,使得水分子可以較快速進入水膠內而膨潤開來。
最後,進一步的分析水膠膨潤機制對於溶脹時蛋白質lysozyme與BSA在不同溫度下釋放的影響。結果顯示SBMA的添加有助於蛋白質在37℃下於poly(NIPAAm-co-SBMA)水膠的釋放,且釋放機制由溶脹控制轉變為擴散控制的方式進行。
摘要(英) A series of copolymeric hydrogels based on N-isopropylacrylamide (NIPAAm), zwitterionic sulfobetaine methacrylate (SBMA) were prepared by free radical polymerization in this study. N,N’’-methylene -bis-acrylamide (NMBA) as a crosslinker, we prepared three types of poly(NIPAAm-co-SBMA) copolymeric hydrogels and controlled the total monomer concentration was 10 wt%, which the monomer molar ratio were 95:5, 90:10 and 80:20 mol%, respectively. In addition, we also prepared a poly(NIPAAm) hydrogel as a control to investigate the swelling mechanism and the release of protein in the swelling from hydrogels in various compositions and temperatures.
The results of the interaction parameter χ calculated showed that the presence of the SBMA composition decreases the interaction parameter because of the increasing interaction between hydrogel networks and water. Enthalpy change (?H) and entropy change (?S) were obtained by
χ H and χ S . They were both negative, and their absolute values increased with the temperature; this meant that the number of ordered water increased with decreasing total water content at elevated temperature. Furthermore, the phenomenon was more obvious for p(NIPAAm) gel than for p(NIPAAm/SBMA) gels because of the greater hydrophobicity of p(NIPAAm).
In the dynamic swelling experiment, we have attempted to investigate the effect of composition and temperature on the swelling mechanism of NIPAAm containing SBMA hydrogels. The results revealed that the content of SBMA in poly(NIPAAm) hydrogels would facilitate the increase of relaxation rate and diffusion coefficient of water entering the hydrogels.
Furthermore, the presented copolymeric hydrogels are investigated for using in protein release. The results were observed that the addition of SBMA in hydrogel could increase the releasing of protein in hydrogels at 37 ℃. And the releasing of protein increase with the amount of SBMA increase in hydrogel.With increasing the content of SBMA in p(NIPAAm) hydrogel, it would facilitate the behavior of protein release. And the mechanism of release would transfer from relaxation-controlled process to diffusion-controlled process.
關鍵字(中) ★ 水凝膠
★ 膨潤行為
★ 硫代甜菜鹼
★ 異丙基烯醯胺
★ 膨潤機制
★ 蛋白質釋放
關鍵字(英) ★ protein release
★ N-isopropylacrylamide
★ swelling mechanism
★ hydrogel
★ sulfobetaine methacrylate
★ swelling behavior
論文目次 中文摘要 .................I
Abstruct ............. III
致謝 ................... V
目錄 .................. VI
表目錄 ................. X
圖目錄 ................. XI
第一章 緒論 ........................ 1
第二章 文獻回顧 .................... 3
2.1水凝膠之定義、分類、結構 .......... 3
2.2水凝膠之膨潤行為 ................. 7
2.2.1水凝膠膨潤之熱力學 ............. 8
2.2.2水凝膠膨潤之動力學 ............. 9
2.3水凝膠之相互作用力 ............... 10
2.3.1相互作用力種類 ................ 10
2.3.2作用力參數 (Interaction parameter)........ 12
2.4 藥物控制釋放系統 ...................... 14
2.4.1擴散控制(Diffusion-Controlled)之傳遞系統 .......... 14
2.4.2溶脹控制(Swelling-Controlled)之傳遞系統 ..........18
2.4.3化學反應控制(Chemical-Controlled)之傳遞系統 .......... 21
2.5水凝膠於生醫領域上之應用 .................. 24
2.6智能型水凝膠於藥物傳遞系統 ................ 26
2.6.1溫度敏感型水凝膠 ....................... 27
2.6.1.1溫度敏感水凝膠的特性 .................. 27
2.6.1.2溫度敏感水凝膠在藥物控制釋放的應用 ............. 28
2.6.2pH敏感型水凝膠 ............................... 30
2.6.2.1pH敏感水凝膠的特性 ......................... 30
2.6.2.2pH敏感水凝膠在藥物控制釋放的應用 ................ 32
2.6.3 pH和溫度敏感型水凝膠 ........................... 33
2.6.3.1 pH和溫度敏感水凝膠的特性 ................... 33
2.6.3.2 pH和溫度敏感水凝膠在藥物控制釋放的應用 ... 35
2.7 含SB類雙離子性單體之高分子水凝膠性質 ................ 36
第三章 實驗藥品、儀器及方法 ............................ 38
3.1實驗藥品 ......................... 38
3.2儀器設備 ..................... 40
3.3水膠薄膜的製備 .................... 42
3.3.1 NIPAAm 單體純化步驟 .............. 42
3.3.2 NIPAAm/SBMA 水膠之製備 ........... 42
2.4.3化學反應控制(Chemical-Controlled)之傳遞系統 .......... 21
2.5水凝膠於生醫領域上之應用 .................. 24
2.6智能型水凝膠於藥物傳遞系統 ........................... 26
2.6.1溫度敏感型水凝膠 ................................. 27
2.6.1.1溫度敏感水凝膠的特性 ........................... 27
2.6.1.2溫度敏感水凝膠在藥物控制釋放的應用 ............. 28
2.6.2pH敏感型水凝膠 .................................. 30
2.6.2.1pH敏感水凝膠的特性 .............................. 30
2.6.2.2pH敏感水凝膠在藥物控制釋放的應用 ................ 32
2.6.3 pH和溫度敏感型水凝膠 ............................ 33
2.6.3.1 pH和溫度敏感水凝膠的特性 ............... 33
2.6.3.2 pH和溫度敏感水凝膠在藥物控制釋放的應用 ... 35
2.7 含SB類雙離子性單體之高分子水凝膠性質 ......... 36
第三章 實驗藥品、儀器及方法 ......................... 38
3.1實驗藥品 .................... 38
3.2儀器設備 .................... 40
3.3水膠薄膜的製備 ............... 42
3.3.1 NIPAAm 單體純化步驟 ............... 42
3.3.2 NIPAAm/SBMA 水膠之製備 ............ 42
3.3.3 包覆蛋白質之NIPAAm/SBMA水膠製備 .................... 44
3.4 實驗設計與步驟 ............................... 45
3.4.1 水膠平衡膨潤度實驗 .......................... 45
3.4.2 水膠膨潤動力學實驗 .......................... 46
3.4.3 水膠之應力/應變實驗 ......................... 47
3.4.4 水膠之交聯點分子量與網目大小計算 ............... 48
3.4.5 水膠與水之混合焓(?H)與混合熵(?S)計算 .......... 50
3.5 NIPAAm/SBMA水凝膠之藥物釋放實驗 ................ 51
3.5.1 蛋白質釋放實驗 ............................. 51
3.5.2 蛋白質溶液濃度檢測 ........................... 51
3.5.3蛋白質釋放之動力學分析 ......................... 52
第四章 結果與討論............... 55
4.1 NIPAAm/SBMA共聚水膠之平衡膨潤度 ............... 56
4.1.1單體組成對於平衡膨潤度之影響 .................... 56
4.1.2溫度對於平衡膨潤度之影響 ........................ 58
4.2 NIPAAm/SBMA共聚水凝膠之結構參數 .................. 60
4.1.1單體組成與溫度對於結構參數之影響 .................. 60
4.3 NIPAAm/SBMA共聚凝膠之作用力參數(χ) ............... 63
4.3.1單體組成對於作用力參數χ值之影響 ............... 63
4.3.2溫度對於作用力參數χ值之影響 ...................... 64
4.3.3 膨潤之熱力學分析 ............................... 66
4.4 NIPAAm/SBMA共聚水膠之膨潤動力學 ................... 71
4.4.1溫度對於膨潤機制之影響 ............................ 72
4.4.2單體組成對於膨潤機制之影響 ........................ 79
4.5蛋白質於NIPAAm/SBMA共聚水膠之釋放行為................... 80
4.5.1 Lysozyme與BSA於凝膠薄膜之釋放行為 ................... 82
4.5.2溫度對於lysozyme與BSA釋放機制之影響 ............... 87
4.5.3 Poly(NIPAAm-co-SBMA)水膠於控制釋放之應用 ........ 94
結論 ........................................ 95
參考文獻 ............................... 97
附錄 ..................................... 104
參考文獻 [1] M.A. Casadei, G. Pitarresi, R. Calabrese, P. Paolicelli, and G. Giammona, "Biodegradable and pH-sensitive hydrogels for potential colon-specific drug delivery: characterization and in vitro release studies," Biomacromolecules, vol. 9, pp. 43-49, Jan 2008.
[2] H.C. Chiu, A.T. Wu, and Y.F. Lin, "Synthesis and characterization of acrylic acid-containing dextran hydrogels," Polymer, vol. 42, pp. 1471-1479, 2001.
[3] H.G. Schild, "Poly(n-isopropylacrylamide):experiment, theory and application," Prog. Polym. Sci., vol. 17, pp. 163-249, 1992.
[4] J. Tavakoli, E. Jabbari, M. Etrati Khosroshahi, and M. Boroujerdi, "Swelling characterization of anionic acrylic acid hydrogel in an external electric field," Iran Polym J, vol. 15, pp. 891-900, 2006.
[5] Y. Kaneko, S. Nakamura, K. Sakai, T. Aoyagi, A. Kikuchi, Y. Sakurai, and T. Okano, "Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains," Macromolecules, vol. 31, pp. 6099-6105, 1998.
[6] J.P. Baker, H.W. Blanch, and J.M. Prausnitz, "Swelling properties of acrylamide-based ampholytic hydrogels: comparison of experiment with theory," POLYMER, vol. 36, pp. 1061-1069, 1995.
[7] M.B. Huglin and J.M. Rego, "Influence of a salt on some properties of hydrophilic methacrylate hydrogels," Macromolecules, vol. 24, pp. 2556-2563, 1991.
[8] Y. Chang, W.Yandi, W.Y. Chen, Y.J. Shih, C.C. Yang, Q.D. Ling, and A. Higuchi, "Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine," Biomacromolecules, vol. 11, pp. 1101-10, Apr 12 2010.
[9] N.A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, "Hydrogels in pharmaceutical formulations," Eur J Pharm Biopharm, vol. 50, pp. 27-46, Jul 2000.
[10] K.A. Davis and K.S. Anseth, "Controlled release from crosslinked degradable networks," Crit Rev Ther Drug Carrier Syst, vol. 19, pp. 385-423, 2002.
[11] C.C. Lin and A.T. Metters, "Hydrogels in controlled release formulations: network design and mathematical modeling," Adv Drug Deliv Rev, vol. 58, pp. 1379-408, Nov 30 2006.
[12] N.A. Peppas, Y. Huang, M. Torres-Lugo, J.H. Ward, and J. Zhang, "Physicochemical, foundations and structural design of hydrogels in medicine and biology,," Annu. Rev. Biomed. Eng., vol. 2, pp. 9-29, 2000.
[13] P.J. Flory, "Principles of Polymer Chemistry," Cornell Univ.Press, Ithaca, NY, p. 672, 1953.
[14] T. Canal and N.A. Peppas, "Correlation between mesh size and equilibrium degree of swelling of polymeric networks," J Biomed Mater Res, vol. 23, pp. 1183-93, Oct 1989.
[15] N.A. Peppas, K.B. Keys, M. Torres-Lugo, and A.M. Lowman, "Poly(ethylene glycol)-containing hydrogels in drug delivery," J Control Release, vol. 62, pp. 81-7, Nov 1 1999.
[16] M.N. Mason, A.T. Metters, C.N. Bowman, and K.S. Anseth, "Predicting controlled-release behavior of degradable PLA-b-PEG-b-PLA hydrogels," Macromolecules, vol. 34, pp. 4630-4635, 2001.
[17] B. Amsden, "Solute diffusion within hydrogels. Mechanisms and models," Macromolecules, vol. 31, pp. 8382-8395, 1998.
[18] G.M. Cruise, D.S. Scharp, and J.A. Hubbell, "Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels,," Biomaterials, vol. 19, pp. 1287-1294, 1998.
[19] S.R. Lustig and N.A. Peppas, "Solute diffusion in swollen membranes.9. Scaling laws for solute diffusion in gels," J. Appl.Polym. Sci., vol. 36, pp. 735-747, 1988.
[20] R. Zarzyckl, Z. Modrzejewska, and K. Nawrotek, "Drug release from hydrogel matrices," ECOLOGICAL CHEMISTRY AND ENGINEERINGS, vol. 17, pp. 117-136, 2010.
[21] P.J. Flory and J. Rehner, "Statistical mechanics of crosslinked polymer networks. II. Swelling," J Chem Phys, vol. 11, pp. 521-526, 1943.
[22] N.A. Peppas, J. Zach Hilt, A. Khademhosseini, and R. Langer, "Hydrogels in biology and medicine:from molecular principles to bionanotechnology," Adv Mater, vol. 18, pp. 1345-1360, 2006.
[23] E. Vasheghani-Farahani, J.H. Vera, D.G. Cooper, and M.E. Weber, "Swelling of ionic gels in electrolyte solutions," Ind Eng Chem Res,vol. 29, pp. 554-560, 1990.
[24] T. Alfrey, E.F. Gurnee, and W.G. Lloyd, "Diffusion in glassy polymers," J Polym Sci C, vol. 12, pp. 249-261, 1966.
[25] P.L. Ritger and N.A. Peppas, "A simple equation for description of solute release ll. Fickian and anomalous release from swellable devices," Journal of Controlled Release, vol. 5, pp. 37-42, 1987.
[26] Y. Tamai and H. Tanaka, "Molecular Dynamics Study of Polymer-Water Interaction in Hydrogels. 1. Hydrogen-Bond Structure," Macromolecules, vol. 29, pp. 6750-6760, 1996.
[27] I. Bahar, H.Y. Erbi, B.M. Baysa, and B. Erman, "Determination of polymer-solvent interaction parameter from swelling of networks: the system poly(2-hydroxyethyl methacrylate)-diethylene glycol," Macromolecules, vol. 20, pp. 1353-1356, 1987.
[28] T.P. Davis and M.B. Huglin, "Effect of composition on properties of copolymeric N-vinyl-2-pyrrolidone/methyl methacrylate hydrogels and organogels," Polymer, vol. 31, pp. 513-519, 1990.
[29] J. Wang, W. Wu, and Z. Lin, "Kinetics and Thermodynamics of the Water Sorption of 2-Hydroxyethyl Methacrylate/Styrene Copolymer Hydrogels," Journal of Applied Polymer Science, vol. 109, pp. 3018-3023, 2008.
[30] B.G. Kabra, S.H. Gehrke, S.T. Hwang, and W.A. Ritschel, "Modification of the Dynamic Swelling Behavior of Poly(2-hydroxyethyl mechacrylate) in Water," Journal of Applied Polymer Science, vol. 42, pp. 2409-2416, 1991.
[31] J. Siepmann and N.A. Peppas, "Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC)," Adv Drug Deliv Rev, vol. 48, pp. 139-157, 2001.
[32] H.Y. Karasulu, G. Ertan, and T. Kose, "Modeling of theophylline release from different geometrical erodible tablets," Eur. J. Pharm. Biopharm., vol. 49, pp. 177-182, 2000.
[33] R. Yoshida, K. Sakai, T. Okano, and Y. Sakurai, "Pulsatile drugdelivery systems using hydrogels," Adv Drug Deliv Rev, vol. 11, pp. 85-108, 1993.
[34] C.S. Brazel and N.A. Peppas, "Dimensionless analysis of swelling of hydrophilic glassy polymers with subsequent drug release from relaxing structures," Biomaterials, vol. 20, pp. 721-732, 1999.
[35] N.A. Peppas and J.J. Sahlin, "A simple equation for the description of solute release. 3. Coupling of diffusion and relaxation," Int.J.Pharm., vol. 57, pp. 169-172, 1989.
[36] R.W. Korsmeyer and N.A. Peppas, "Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs," J. Membr. Sci., vol. 9, pp. 211-227, 1981.
[37] C.S. Brazel and N.A. Peppas, "Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers," polymer, vol. 40, pp. 3383-3398, 1999.
[38] C.S. Brazel and N.A. Peppas, "Modeling of drug release from swellable polymers," Eur. J. Pharm. Biopharm., vol. 49, pp. 47-58, 2000.
[39] M. Khorram and E. Vasheghani-Frarahani, "Modeling of drug release from initially glassy swellingcontrolled systems," Proceding of the 33rd Annual Metting and Exposition of the Controlled Release Society, Abst # 746, 2006.
[40] S.E. Sakiyama-Elbert and J.A. Hubbell, "Controlled release of nerve growth factor from a heparin-containing fibrin-based cell ingrowth matrix," J. Control. Release, vol. 69, pp. 149-158, 2000.
[41] S.E. Sakiyama-Elbert and J.A. Hubbell, "Development of fibrin derivatives for controlled release of heparin-binding growth factors," J. Control. Release, vol. 65, pp. 389-402, 2000.
[42] H.B. Hopfenberg, "Controlled release polymeric formulations," Acs Symposium Series, vol. 33, pp. 26-31, 1976.
[43] I. Katzhendler, A. Hoffman, A. Goldberger, and M. Friedman, "Modeling of drug release from erodible tablets," J. Pharm. Sci., vol. 86, pp. 110-115, 1997.
[44] X. Zhao and J.M. Harris, "Novel degradable poly(ethylene glycol) hydrogels for controlled release of protein," J. Pharm. Sci., vol. 87, pp. 1450-1458, 1998.
[45] D. Seliktar, A.H. Zisch, M.P. Lutolf, J.L.Wrana, and J.A. Hubbell, "MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing," J. Biomed. Mater. Res. A 68A, pp. 704-716, 2004.
[46] J.L. Drury and D.J. Mooney, "Hydrogels for tissue engineering: scaffold design variables and applications," Biomaterials, vol. 24, pp. 4337-4351, 2003.
[47] J.J. Kim and K. Park, "Smart hydrogels for bioseparation," Bioseparation, vol. 7, pp. 177-184, 1998.
[48] M.P. Ricardo, J.F. Mano, and R.L. Reis, "Smart thermoresponsive coatings and surfaces for tissue engineering:switching cell-material boundaries," TRENDS in Biotechnology, vol. 25, pp. 577-583, 2007.
[49] A. Richter, G. Paschew, S. Klatt, J. Lienig, K.F. Arndt, and Hans-Jurgen P. Adler, "Review on Hydrogel-based pH Sensors and Microsensors," Sensors, vol. 8, pp. 561-581, 2008.
[50] D. Schmaljohann, "Thermo- and pH-responsive polymers in drug delivery," Adv Drug Delivery Rev, vol. 58, pp. 1655-1670, 2006.
[51] B. Jeong and A. Gutowska, "Lessons from nature: stimuli responsive polymers and their biomedical applications," Trends Biotechnol, vol. 20, pp. 305-311, 2002.
[52] H. Katono, A. Maruyama, K. Sanui, T. Okano, and Y. Sakurai, "Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide- co-butylmethacrylate) and poly(acrylic acid)," J. Control. Rel., vol. 16, pp. 215-227, 1991.
[53] A.A. Naddaf, "Diffusion Kinetics of BSA Protein in Stimuli Responsive Hydrogels," Defect and Diffusion Forum, vol. 297 - 301, pp. 664-669, 2010.
[54] T. Okano, Y.H. Bae, H. Jacobs, and S.W. Kim, "Thermally on-off switching polymers for drug permeation and release," Journal of Controlled Release, vol. 11, pp. 255-265, 1990.
[55] M. Zhai, N. Liu, J. Li, M. Yi, J. Li, and H. Ha, "Radiation preparation of PVA-g-NIPAAm in a homogeneous system and its application in controlled release," Radiation Physics and Chemistry, vol. 57, pp. 481-484, 2000.
[56] W.F. Lee and S.H. Yen, "Thermoreversible hydrogels. XII. Effect of the polymerization conditions on the swelling behavior of the N-isopropylacrylamide gel," Journal of Applied Polymer Science, vol. 78, pp. 1604-1611, 2000.
[57] D.E. Meye, B.C. Shin, G.A. Kong, M.W. Dewhirst, and A. Chilkoti, "Drug targeting using thermally responsive polymers and local hyperthermia," Journal of Controlled Release, vol. 74, pp. 213-224, 2001.
[58] H. Yu and D.W. Grainger, "Thermo-sensitive swelling behavior in crosslinked N-isopropylacrylamide networks: Cationic, anionic, and ampholytic hydrogels," Journal of Applied Polymer Science, vol. 49, pp. 1553-1563, 1993.
[59] B. Kim, K.L. Flamme, and N.A. Peppas, "Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery," Journal of Applied Polymer Science, vol. 89, pp. 1606-1613, 2003.
[60] S.E. Park, Y.C. Nho, Y.M. Lim, and H.I. Kim, "Preparation of pH-sensitive poly(vinyl alcohol-g-methacrylic acid) and poly(vinyl alcohol-g-acrylic acid) hydrogels by gamma ray irradiation and their insulin release behavior," Journal of Applied Polymer Science, vol. 91, pp. 636-643, 2004.
[61] M. Torres-Lugo and N.A. Peppas, "Preparation and Characterization of P(MAA-g-EG) Nanospheres for Protein Delivery Applications," JOURNAL OF NANOPARTICLE RESEARCH, vol. 4, pp. 73-81, 2002.
[62] A. Serres, M. Baudys, and S.W. Kim, "Temperature and pH-sensitive polymers for human calcitonin delivery," Pharm. Res., vol. 13, pp. 196-201, 1996.
[63] X. Yin, A.S. Hoffman, and P.S. Stayton, "Poly(n-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH," Biomacromolecules, vol. 7, pp. 1381-1385, 2006.
[64] S. Beltran, J.P. Baker, H.H. Hooper, H.W. Blanch, and J.M. Prausnitz, "Swelling equilibria for weakly ionizable, temperature-sensitive hydrogels," Macromolecules, vol. 24, pp. 549-551, 1991.
[65] C.L. Lo, K.M. Lin, C.K. Huang, and G.H. Hsiue, "Self-Assembly of a Micelle Structure from Graft and Diblock Copolymers: An Example of Overcoming the Limitations of Polyions in Drug Delivery," Advanced Functional Materials, vol. 16, pp. 2309-2316, 2006.
[66] T.G. Park, "Temperature modulated protein release from pH/temperature- sensitive hydrogels," Biomaterials, vol. 20, pp. 517-521, 1999.
[67] D.N. Schulza, P.K. Agarwala, J. Larabeea, J.J. Kaladasa, L. Sonia, B. Handwerkera, R.T. Garnera, "Phase behaviour and solution properties of sulphobetaine polymers," Polymer, vol. 27, 1986.
[68] W. Cai and R.B. Gupta, "Thermosensitive and Ampholytic Hydrogels for Salt Solution," Journal of Applied Polymer Science, vol. 88, pp. 2032-2037, 2002.
[69] W.Fu. Lee and C.F. Chen, "Poly[2-(hydroxyethylmeth acrylate)-co-(sulfobetaine)]s hydrogels: 1. Synthesis and swelling behaviors of the 2-(hydroxyethyl methacrylate)-co-2-(vinyl-1- pyridinium propane sulfonate) hydrogels," Journal of polymer research, vol. 5, pp. 105-114, 1998.
[70] A.B. Lowe and C.L. McCormick, "Synthesis and Solution Properties of Zwitterionic Polymers," Chemical Reviews, vol. 102, pp. 4177-4189, 2002.
[71] L.E. Nielsen, "Cross-Linking–Effect on Physical Properties of Polymers," Journal of Macromolecular Science, Part C: Polymer Reviews, vol. 3, pp. 69-103, 1969.
[72] P.J. Flory, "Principles of Polymer Chemistry, Cornell University Press, Ithaca, 1953, Chapter 12, 13.."
[73] M.K. Krusic, M. Ilic, and J. Filipovic, "Swelling behaviour and paracetamol release from poly(N-isopropylacrylamide-itaconic acid) hydrogels," Polym. Bull., vol. 63, pp. 197-211, 2009.
[74] T.C. Warren and W. Prins, "Polymer-Diluent Interaction in Cross-Linked Gels of Poly(2-hydroxyethyl methacrylate)," Macromolecules, vol. 5, pp. 506-512, 1972.
[75] C. Khoury, T. Adalsteinsson, B. Johnson, W.C. Crone, and D.J. Beebe, "Tunable Microfabricated Hydrogels - A Study in Protein Interaction and Diffusion," Biomedical Microdevices, vol. 5, pp. 35-45, 2003.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2012-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明