參考文獻 |
[1] S.-F. Gong, A. Backstrom, M. Agesjo, A. Serban, and M. Karlsson, “Integration of a 5-GHz radio front-end in PCB,” in Proc. High Density Microsystem Design and Packaging and Component Failure Analysis Conf., June 2006, pp. 146–148.
[2] J. I. Ryu, D. Kim, H. M. Cho, and J. C. Kim, “Implementation of WLAN front end module with a power amplifier,” in Proc. Asia–Pacific Microw. Conf., Dec. 2007, pp. 99–102.
[3] C. H. Lee, A. Sutono, S. Han, K. Lim, S. Pinel, E. M. Tentzeris, and J. Laskar, “A compact LTCC-based Ku-band transmitter module,” IEEE Trans. Adv. Packag., vol. 25, no. 3, pp. 374–384, Aug. 2002.
[4] D. Kim, D. H. Kim, J. I. Ryu,Y. Park, and J. C. Park, “A compact BT/WiFi dual-band dual-mode RF front-end module,” in Proc. Asia–Pacific Microw. Conf., Dec. 2011, pp. 110–113.
[5] J.-I. Ryu, S.-H. Park, J.-W Moon, D. Kim, J. C. Kim, and N. Kang, “Implementation of a front-end-module by embedding a RF switch IC and a power amplifier in printed-circuit-
board,” in Proc. 59th, Electron. Comp. Technol. Conf., San Diego, CA, May 2009, pp.
1920–1925.
[6] W.-T. Chen, C.-S. Chen, C.-H. Tsai, K.-C. Chin, and S.-J. Lai, “A mobile WiMAX RF front-end module with integrated passive components and novel material,” in Proc. Electron. Syst. Integr. Technol. Conf., Sep. 2008, pp. 181–186.
[7] W. T. Khan, S. Bhattacharya, C. Patterson, G. E. Ponchak, and J. Papapolymerou, “Low cost 60 GHz RF front end transceiver integrated on organic substrate,” in IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, MD, June 2011, pp. 1–4.
[8] P.-H. Wu, S.-M. Wang, and M.-W. Lee, “Wi-Fi/WiMAX dual mode RF MMIC front-end module,” in IEEE Radio Frequency Integrated Circuits Symp. Dig.,Boston, MA, June 2009, pp. 289–292.
[9] S. E. Gunnarsson, C. Karnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, and C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2174–2186, Nov. 2005.
[10] S. Leuschner, J.-E. Mueller, and H. Klar, “A 1.8GHz wide-band stacked-cascode CMOS power amplifier for WCDMA applications in 65nm standard CMOS,” in IEEE Radio Frequency Integrated Circuits Symp. Dig., Baltimore, MD, June 2011, pp. 1–4.
[11] D. Chowdhury, C. D. Hull, O. B. Degani, Y. Wang, and A. M. Nikneajd, “A fully integrated dual-mode highly linear 2.4 GHz CMOS power amplifier for 4G WiMAX applications,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3393–3402, Dec. 2009.
[12] A. Raghavan, D. Heo, M. Maeng, A. Sutono, K. Lim, and J. Laskar, “A 2.4 GHz high efficiency SiGe HBT power amplifier with high-Q LTCC harmonic suppression filter,” in IEEE MTT-S Int. Microw. Symp. Dig., Seattle, WA, Jun. 2002, pp. 1019–1022.
[13] H. Wang, C. Sideris, and A. Hajimiri, “A CMOS broadband power amplifier with a transformer-based high-order output matching network,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2709–2722, Dec. 2010.
[14] A. A. Tanany, A. Sayed, and G. Boeck, “Broadband GaN switch mode class E power amplifier for UHF applications,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, June 2009, pp. 761–764.
[15] K. Chen, X. Liu, W. J. Chappell, and D. Peroulis, “Co-design of power amplifier and narrowband filter using high-Q evanescent-mode cavity resonator as the output matching network,” in IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, MD, June 2011, pp. 1–4.
[16] K. Chen and D. Peroulis, “Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3162–3173, Dec. 2011.
[17] Z. Wang, S. Gao, Nasri, F. Nasri, C.-W. Park, “High power added efficiency power amplifier with harmonic controlled by UWB filter with notched band at 6.42 GHz,” in Proc. 12th. Wireless Microw. Technology Conf., Apr. 2011, pp. 1–4.
[18] M. Helaoui and F. M. Ghannouchi, “Optimizing losses in distributed multiharmonic matching networks applied to the design of an RF GaN power amplifier with higher than 80% power-added efficiency,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 2, pp. 314–322, Feb. 2009.
[19] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filter, Impedance-Matching Networks, and Coupling Structures, 1st ed. Norwood, Artech House, 1980.
[20] A. Ismail and A. A. Abidi, “A 3–10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2269–2277, Dec. 2004.
[21] S. C. Cripps, RF Power Amplifier for Wireless Communications, 7th ed., Artech house, Inc., 2006.
[22] N. O. Sokal and A. D. Sokal, “Class-E a new class of high efficiency tuned single-ended switching power amplifiers”, IEEE J. Soild-State Circuits, vol. 10, No. 3, pp. 168–176, June 1975.
[23] Y. Y. Woo, Y. Yang, and B. Kim, “Analysis and experiments for highefficiency class-F and inverse class-F power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1969–1974, May 2006.
[24] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, 2nd ed., Prentice-
Hall, Inc., 1997.
[25] D. M. Pozar, Microwave Engineering, 3rd ed., John Wiley & Sons, Inc., 2005.
[26] 吳建鋒,以多重偶合線實現新式多功能微波元件,碩士論文,國立中央大學電機工程研究所,民國一百年。
|