博碩士論文 995201107 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.223.238.183
姓名 黃雅純(Ya-chun Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 帶通功率放大器設計
(Bandpass Power Amplifier Design)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的研究方向為微波帶通功率放大器的研製,藉由整合帶通濾波器與功率放大器,希望能達到元件的多功能化並縮小發射端電路面積,以提高射頻前端的系統整合度。實現方式為將帶通濾波器的設計引入功率放大器的匹配電路設計中,並以兩個設計實例驗證成果。
首先,1.95 GHz A類帶通功率放大器設計部分,使用二階Chebyshev響應來進行輸出與輸入端帶通濾波器的設計,為了增加設計的自由度,採用阻抗轉換器與導納轉換器的架構實現此電路,以利用集種元件實現於微波基板上。量測結果顯示,帶通功率放大器的30 dB止帶頻寬可達5倍頻,對於2次與3次諧波有45 dBc與60 dBc以上的抑制。
接著進行1.95 GHz AB類帶通功率放大器設計,設計與實現方式皆與前一電路相同。從量測結果可看出帶通功率放大器的25 dB止帶頻寬可達5倍頻,對於2次與3次諧波有50 dBc以上的抑制,4次與5次諧波也有70 dBc以上的抑制。
本研究將帶通濾波器設計於功率放大器的匹配電路中,並提出了完整的設計流程,由電路實作結果可看出在電路面積差不多的情況下,帶通功率放大器不僅將功率放大,更具有高選擇度、寬止帶與諧波抑制效果。
摘要(英) This thesis focuses on the design of novel microwave bandpass power amplifier. By integrating the functions of bandpass filter and power amplifier, novel multi-functional RF component is achieved, which can help reduce the circuit size and improve the level of integration of RF transmitter. The proposed method of realization is based on introducing the bandpass filter design flow into the matching network design of power amplifier. Two design examples are present to validate the effectiveness of proposed design method and the circuit performance.
First, at 1.95 GHz class A bandpass power amplifier is implemented, in which the 2nd-order Chebyshev bandpass response is used to design the input and output matching networks. In order to enhance the design flexibility of bandpass matching network, immittance inverters are adopted in the proposed circuit structure. The bandpass power amplifier is implemented on printed circuit board using packaged HEMT and chip components. Due to the bandpass matching networks used, very good harmonic suppression is achieved. The 30 dB upper stopband rejection is up to 5f0. Especially, the second and the third harmonic levels are below −45 dBc and −60 dBc, respectively.
Next, the 1.95 GHz class AB bandpass power amplifier design is implemented using the same technique. The measured results show that 25 dB upper stopband rejection is also up to 5f0. Notably, the second and the third harmonic levels are below −50 dBc and the fourth as well as the fifth harmonic levels are below −70 dBc.
The proposed bandpass power amplifier is composed of the functions of bandpss filter and power amplifier with complete and systematic design procedure. Compared with conventional ones, the propsoed bandpass power amplifier features better selectivity, wider upper stopband, and better harmonic suppression with about the same circuit area.
關鍵字(中) ★ 功率放大器
★ 帶通濾波器
關鍵字(英) ★ Power Amplifier
★ Bandpass Filter
論文目次 論文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 章節介紹 3
第二章 帶通功率放大器設計原理與流程 4
2.1 線性功率放大器介紹 4
2.1.1 簡介 4
2.1.2 A類功率放大器 4
2.1.3 AB類功率放大器 5
2.2 設計原理 6
2.3 設計公式 9
2.3.1串聯RLC電路負載 9
2.3.2並聯RLC電路負載 13
2.4 設計流程 16
第三章 A類射頻帶通功率放大器 17
3.1 簡介 17
3.2 1.95 GHz A類帶通功率放大器 17
3.2.1 1.95 GHz A類帶通功率放大器設計 17
3.2.2 1.95 GHz A類帶通功率放大器實作 26
3.3 1.95 GHz A類單頻功率放大器 35
3.3.1 1.95 GHz A類單頻功率放大器設計 35
3.3.2 1.95 GHz A類單頻功率放大器實作 36
3.4 特性比較 37
第四章 AB類射頻帶通功率放大器 44
4.1 簡介 44
4.2 1.95 GHz AB類帶通功率放大器 44
4.2.1 1.95 GHz AB類帶通功率放大器設計 44
4.2.2 1.95 GHz AB類帶通功率放大器實作 51
4.3 1.95 GHz AB類單頻功率放大器 60
4.3.1 1.95 GHz AB類單頻功率放大器設計 60
4.3.2 1.95 GHz AB類單頻功率放大器實作 61
4.4 特性比較 62
第五章 結論 68
參考文獻 70
參考文獻 [1] S.-F. Gong, A. Backstrom, M. Agesjo, A. Serban, and M. Karlsson, “Integration of a 5-GHz radio front-end in PCB,” in Proc. High Density Microsystem Design and Packaging and Component Failure Analysis Conf., June 2006, pp. 146–148.
[2] J. I. Ryu, D. Kim, H. M. Cho, and J. C. Kim, “Implementation of WLAN front end module with a power amplifier,” in Proc. Asia–Pacific Microw. Conf., Dec. 2007, pp. 99–102.
[3] C. H. Lee, A. Sutono, S. Han, K. Lim, S. Pinel, E. M. Tentzeris, and J. Laskar, “A compact LTCC-based Ku-band transmitter module,” IEEE Trans. Adv. Packag., vol. 25, no. 3, pp. 374–384, Aug. 2002.
[4] D. Kim, D. H. Kim, J. I. Ryu,Y. Park, and J. C. Park, “A compact BT/WiFi dual-band dual-mode RF front-end module,” in Proc. Asia–Pacific Microw. Conf., Dec. 2011, pp. 110–113.
[5] J.-I. Ryu, S.-H. Park, J.-W Moon, D. Kim, J. C. Kim, and N. Kang, “Implementation of a front-end-module by embedding a RF switch IC and a power amplifier in printed-circuit-
board,” in Proc. 59th, Electron. Comp. Technol. Conf., San Diego, CA, May 2009, pp.
1920–1925.
[6] W.-T. Chen, C.-S. Chen, C.-H. Tsai, K.-C. Chin, and S.-J. Lai, “A mobile WiMAX RF front-end module with integrated passive components and novel material,” in Proc. Electron. Syst. Integr. Technol. Conf., Sep. 2008, pp. 181–186.
[7] W. T. Khan, S. Bhattacharya, C. Patterson, G. E. Ponchak, and J. Papapolymerou, “Low cost 60 GHz RF front end transceiver integrated on organic substrate,” in IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, MD, June 2011, pp. 1–4.
[8] P.-H. Wu, S.-M. Wang, and M.-W. Lee, “Wi-Fi/WiMAX dual mode RF MMIC front-end module,” in IEEE Radio Frequency Integrated Circuits Symp. Dig.,Boston, MA, June 2009, pp. 289–292.
[9] S. E. Gunnarsson, C. Karnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, and C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2174–2186, Nov. 2005.
[10] S. Leuschner, J.-E. Mueller, and H. Klar, “A 1.8GHz wide-band stacked-cascode CMOS power amplifier for WCDMA applications in 65nm standard CMOS,” in IEEE Radio Frequency Integrated Circuits Symp. Dig., Baltimore, MD, June 2011, pp. 1–4.
[11] D. Chowdhury, C. D. Hull, O. B. Degani, Y. Wang, and A. M. Nikneajd, “A fully integrated dual-mode highly linear 2.4 GHz CMOS power amplifier for 4G WiMAX applications,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3393–3402, Dec. 2009.
[12] A. Raghavan, D. Heo, M. Maeng, A. Sutono, K. Lim, and J. Laskar, “A 2.4 GHz high efficiency SiGe HBT power amplifier with high-Q LTCC harmonic suppression filter,” in IEEE MTT-S Int. Microw. Symp. Dig., Seattle, WA, Jun. 2002, pp. 1019–1022.
[13] H. Wang, C. Sideris, and A. Hajimiri, “A CMOS broadband power amplifier with a transformer-based high-order output matching network,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2709–2722, Dec. 2010.
[14] A. A. Tanany, A. Sayed, and G. Boeck, “Broadband GaN switch mode class E power amplifier for UHF applications,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, June 2009, pp. 761–764.
[15] K. Chen, X. Liu, W. J. Chappell, and D. Peroulis, “Co-design of power amplifier and narrowband filter using high-Q evanescent-mode cavity resonator as the output matching network,” in IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, MD, June 2011, pp. 1–4.
[16] K. Chen and D. Peroulis, “Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3162–3173, Dec. 2011.
[17] Z. Wang, S. Gao, Nasri, F. Nasri, C.-W. Park, “High power added efficiency power amplifier with harmonic controlled by UWB filter with notched band at 6.42 GHz,” in Proc. 12th. Wireless Microw. Technology Conf., Apr. 2011, pp. 1–4.
[18] M. Helaoui and F. M. Ghannouchi, “Optimizing losses in distributed multiharmonic matching networks applied to the design of an RF GaN power amplifier with higher than 80% power-added efficiency,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 2, pp. 314–322, Feb. 2009.
[19] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filter, Impedance-Matching Networks, and Coupling Structures, 1st ed. Norwood, Artech House, 1980.
[20] A. Ismail and A. A. Abidi, “A 3–10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2269–2277, Dec. 2004.
[21] S. C. Cripps, RF Power Amplifier for Wireless Communications, 7th ed., Artech house, Inc., 2006.
[22] N. O. Sokal and A. D. Sokal, “Class-E a new class of high efficiency tuned single-ended switching power amplifiers”, IEEE J. Soild-State Circuits, vol. 10, No. 3, pp. 168–176, June 1975.
[23] Y. Y. Woo, Y. Yang, and B. Kim, “Analysis and experiments for highefficiency class-F and inverse class-F power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1969–1974, May 2006.
[24] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, 2nd ed., Prentice-
Hall, Inc., 1997.
[25] D. M. Pozar, Microwave Engineering, 3rd ed., John Wiley & Sons, Inc., 2005.
[26] 吳建鋒,以多重偶合線實現新式多功能微波元件,碩士論文,國立中央大學電機工程研究所,民國一百年。
指導教授 林祐生(Yo-shen Lin) 審核日期 2012-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明